Pregunta
upstudy study bank question image url

Question 17 Pause Zoom Asystem of equations is shown below. \[ \left\{\begin{array}{l} 8 x-2 y=-4 \\ 4 x-y=-2 \end{array}\right. \] What is the solution to this system of equations? A. There is no solution to this system of equations. B. There are an infinite number of solutions to this system of equations. C. \( (0,-2) \) D. \( (2,0) \)

Ask by Welch Stephens. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are infinitely many solutions to this system of equations.

Solución

To solve the given system of equations: \[ \left\{ \begin{array}{l} 8x - 2y = -4 \\ 4x - y = -2 \end{array} \right. \] Let's analyze the two equations: 1. **First Equation:** \(8x - 2y = -4\) 2. **Second Equation:** \(4x - y = -2\) Notice that the second equation is exactly half of the first equation. To see this, multiply the second equation by 2: \[ 2(4x - y) = 2(-2) \implies 8x - 2y = -4 \] This shows that both equations are essentially the same. When two equations in a system are multiples of each other, it means they represent the same line. Therefore, every solution that lies on one line also lies on the other. This implies that there are **infinitely many solutions** to the system. **Answer:** B. There are an infinite number of solutions to this system of equations.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's start by solving the system of equations step by step. First, we can use the second equation \( 4x - y = -2 \) to express \( y \) in terms of \( x \): \[ y = 4x + 2 \] Next, we substitute this expression for \( y \) into the first equation \( 8x - 2y = -4 \): \[ 8x - 2(4x + 2) = -4 \] Simplifying gives: \[ 8x - 8x - 4 = -4 \] This simplifies to \( -4 = -4\), which is true for any value of \( x \). Thus, this indicates that the equations are dependent and describe the same line, leading to an infinite number of solutions for the system. So the answer is **B. There are an infinite number of solutions to this system of equations.** Want a little history on systems of equations? They date back to ancient civilizations! The Babylonians were solving linear equations as early as 2000 BCE, paving the way for future advancements in algebra. Fast forward to now, and we use systems of equations in everything from economics to engineering! For some real-world application, consider how traffic systems use equations to optimize flow. By creating models based on traffic patterns and predictive analytics, engineers can determine the best solutions for managing traffic lights, reducing congestion, and improving overall travel times. Systems of equations help solve these complex problems!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad