Use the limit definition of the derivative to find the slope of the tangent line to the curve \( f(x)=5 x^{2} \) at \( x=3 \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the slope of the tangent line to the curve \( f(x) = 5x^2 \) at \( x = 3 \) using the limit definition of the derivative, we start with the formula: \[ f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} \] Here, \( a = 3 \). Thus, we need to evaluate \( f(3) \) and \( f(3 + h) \): 1. \( f(3) = 5(3^2) = 5 \times 9 = 45 \). 2. \( f(3 + h) = 5((3 + h)^2) = 5(9 + 6h + h^2) = 45 + 30h + 5h^2 \). Substituting these into our limit definition, we have: \[ f'(3) = \lim_{h \to 0} \frac{(45 + 30h + 5h^2) - 45}{h} = \lim_{h \to 0} \frac{30h + 5h^2}{h} \] Factoring out an \( h \): \[ = \lim_{h \to 0} \frac{h(30 + 5h)}{h} = \lim_{h \to 0} (30 + 5h) = 30 \] Thus, the slope of the tangent line to the curve \( f(x) = 5x^2 \) at \( x = 3 \) is \( 30 \).