Pregunta
upstudy study bank question image url

b. The Quadratic Formula calculates two possible answers by using the " \( \pm \) " symbol. This symbol (read as "plus or minus") is shorthand notation that tells you to calculate the formula twice: once with addition and once with subtraction in the numerator. Therefore, every Quadratic Formula problem is really two different problems unless the value of \( \sqrt{b^{2}-4 a_{c}} \) is 0 . \[ x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { or } x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \] Carefully substitute \( a, b \), and \( c \) from \( x^{2}-3 x-7=0 \) into the Quadratic Formula. Evaluate each expression (once using addition and once using subtraction) to solve for \( x \). Do these solutions match those from problem \( 5-95 \) ?

Ask by Harris Wood. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to the equation \( x^{2} - 3x - 7 = 0 \) are \( x = \frac{3 + \sqrt{37}}{2} \) and \( x = \frac{3 - \sqrt{37}}{2} \), which are approximately \( x \approx 4.5414 \) and \( x \approx -1.5414 \). These solutions match those from problem \( 5-95 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To solve the quadratic equation \( x^2 - 3x - 7 = 0 \), we identify the coefficients as \( a = 1 \), \( b = -3 \), and \( c = -7 \). Plug these values into the quadratic formula. First, calculate the discriminant: \( b^2 - 4ac = (-3)^2 - 4(1)(-7) = 9 + 28 = 37 \). Now, you can use this in the formula: \[ x = \frac{-(-3) \pm \sqrt{37}}{2(1)} = \frac{3 \pm \sqrt{37}}{2} \] Thus, the two solutions are \( x = \frac{3 + \sqrt{37}}{2} \) and \( x = \frac{3 - \sqrt{37}}{2} \). After calculating the values from problem \( 5-95 \), check if they are equal to these results! If so, congrats, you’ve verified your solution! Now, let's spice this up a bit! Did you know that quadratic equations can also be visualized as parabolas? Each solution you find via the quadratic formula corresponds to the points where the parabola intersects the x-axis. So, if you plotted \( x^2 - 3x - 7 \), you’d see a U-shaped curve touching the x-axis at those two solutions. Additionally, mastering the quadratic formula provides a solid foundation not just for solving equations but also for tackling real-world problems like projectile motion, where the height of an object can be modeled by a quadratic equation. By understanding how and when to apply the quadratic formula, you enable yourself to solve everything from designing roller coasters to predicting the trajectory of rockets! So get ready for some math magic in real life!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad