Pregunta
upstudy study bank question image url

(10 The length of a rectangle, , is three
times its width. The perimeter of the
rectangle is not more than 120 cm .
(a) Write an inequality in .
(b) Hence find the maximum possible value
of its length.

Ask by Patel Haynes. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The inequality is .
(b) The maximum possible length is 45 cm.

Solución

Let’s break down the problem step by step.

Known Conditions:

  1. The length of the rectangle, , is given as cm.
  2. The width of the rectangle, , is one-third of the length: .
  3. The perimeter of the rectangle is not more than 120 cm.

Step (a): Write an inequality in .

The formula for the perimeter of a rectangle is given by:
Substituting the expressions for and :
Now, we can express the perimeter inequality:

Step (b): Solve the inequality to find the maximum possible value of its length.

Let’s simplify the inequality:
  1. Combine the terms:
  2. To combine and , we can express as :
  3. Multiply both sides by 3 to eliminate the fraction:
  4. Divide both sides by 8:
Thus, the maximum possible value of the length is 45 cm.

Summary:

(a) The inequality in is .
(b) The maximum possible value of the length is cm.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem, let’s first express the width in terms of . If the length is three times the width, we can represent the width as . The formula for the perimeter of a rectangle is . Therefore, substituting the width, we get:
Given that the perimeter is not more than 120 cm, we can set up the inequality:
Multiplying both sides by 3 gives:
Dividing by 8 results in:
Thus, the inequality in is .
Now for part (b), since we want to find the maximum possible value of its length, we have:
So the length can be at most 45 cm.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad