Solve the following simultaneous equations. \( \left\{\begin{array}{l}q=2 p^{3}-7 p+3 \\ q=2 p^{3}-3 p-1\end{array}\right. \) \( p= \) \( q= \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the simultaneous equations given by \( q = 2p^3 - 7p + 3 \) and \( q = 2p^3 - 3p - 1 \), we can set the two expressions for \( q \) equal to each other: \[ 2p^3 - 7p + 3 = 2p^3 - 3p - 1 \] Now, we can eliminate \( 2p^3 \) from both sides: \[ -7p + 3 = -3p - 1 \] Next, let's add \( 7p \) to both sides: \[ 3 = 4p - 1 \] Now, add 1 to both sides: \[ 4 = 4p \] Dividing both sides by 4 gives us: \[ p = 1 \] Now that we have \( p \), we can substitute it back into either equation to find \( q \). Using the first equation: \[ q = 2(1)^3 - 7(1) + 3 = 2 - 7 + 3 = -2 \] From the calculations, we find: \( p = 1 \) \( q = -2 \)