Pregunta
upstudy study bank question image url

Solve the equation. \[ \frac{3 x+1}{x-2}+\frac{4}{x}=\frac{-8}{x^{2}-2 x} \]

Ask by Erickson Ryan. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution to the equation is \( x = -\frac{5}{3} \).

Solución

To solve the equation: \[ \frac{3x + 1}{x - 2} + \frac{4}{x} = \frac{-8}{x^2 - 2x} \] **Step 1: Simplify the Denominator** Notice that \( x^2 - 2x \) can be factored: \[ x^2 - 2x = x(x - 2) \] So the equation becomes: \[ \frac{3x + 1}{x - 2} + \frac{4}{x} = \frac{-8}{x(x - 2)} \] **Step 2: Eliminate the Denominator** Multiply both sides of the equation by \( x(x - 2) \) to eliminate the denominators. Note that \( x \neq 0 \) and \( x \neq 2 \) to avoid division by zero. \[ (3x + 1)x + 4(x - 2) = -8 \] **Step 3: Expand and Simplify** Expand the terms: \[ 3x^2 + x + 4x - 8 = -8 \] Combine like terms: \[ 3x^2 + 5x - 8 = -8 \] Add 8 to both sides: \[ 3x^2 + 5x = 0 \] **Step 4: Factor the Quadratic** Factor out \( x \): \[ x(3x + 5) = 0 \] Set each factor equal to zero: 1. \( x = 0 \) However, \( x = 0 \) is excluded because it would make the original denominators undefined. 2. \( 3x + 5 = 0 \) Solve for \( x \): \[ x = -\frac{5}{3} \] **Step 5: Verify the Solution** Check that \( x = -\frac{5}{3} \) does not make any denominator zero: - \( x \neq 0 \) ✔️ - \( x - 2 = -\frac{5}{3} - 2 = -\frac{11}{3} \neq 0 \) ✔️ **Conclusion** The only valid solution is: \[ x = -\frac{5}{3} \] **Final Answer:** \[ \boxed{-\dfrac{5}{3}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \[ \frac{3 x+1}{x-2}+\frac{4}{x}=\frac{-8}{x^{2}-2 x}, \] first, we observe that the right side can be simplified since \(x^2 - 2x = x(x - 2)\). Therefore, we can rewrite the equation as \[ \frac{3x + 1}{x-2} + \frac{4}{x} = \frac{-8}{x(x-2)}. \] Next, we find a common denominator for all the fractions in the equation, which is \(x(x-2)\). We will rewrite the left-hand side with this common denominator: \[ \frac{(3x + 1)x}{x(x - 2)} + \frac{4(x - 2)}{x(x - 2)} = \frac{(3x + 1)x + 4(x - 2)}{x(x - 2)}. \] We can thus rewrite the whole equation as follows: \[ \frac{(3x + 1)x + 4(x - 2)}{x(x - 2)} = \frac{-8}{x(x - 2)}. \] Now, we can equate the numerators: \[ (3x + 1)x + 4(x - 2) = -8. \] Expanding both sides results in: \[ 3x^2 + x + 4x - 8 = -8. \] This simplifies to: \[ 3x^2 + 5x - 8 + 8 = 0, \] which simplifies to \[ 3x^2 + 5x = 0. \] Factoring out \(x\) gives: \[ x(3x + 5) = 0. \] Setting each factor to zero provides the solutions: 1. \(x = 0\), 2. \(3x + 5 = 0 \Rightarrow 3x = -5 \Rightarrow x = -\frac{5}{3}\). Now, we need to verify if these solutions produce any division by zero in the original equation. The original denominators were \(x(x - 2)\) and \(x - 2\). - For \(x = 0\), we have division by zero, so this solution is not valid. - For \(x = -\frac{5}{3}\), neither of the denominators is zero as \(-\frac{5}{3} \neq 0\) and \(-\frac{5}{3} - 2 \neq 0\). Thus, the only valid solution to the given equation is \[ \boxed{-\frac{5}{3}}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad