(c) Consider the geometric sequence \( \frac{2}{9} ;-\frac{2}{3} ; 2 ; \ldots ; 1062882 \). (1) \( \quad \) Determine the general term. (2) Calculate the value of the \( 10^{\text {th }} \) term. (3) Which term in the sequence is equal to -486 ? (4) How many terms are there in this sequence?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve this geometric sequence problem, let’s first identify the common ratio and the general term, followed by the specific calculations. 1. **General Term**: The first term \( a = \frac{2}{9} \) and the common ratio \( r = \frac{-\frac{2}{3}}{\frac{2}{9}} = -3 \). The general term \( a_n = a \cdot r^{n-1} = \frac{2}{9} \cdot (-3)^{n-1} \). 2. **10th Term**: To find the 10th term, substitute \( n = 10 \): \[ a_{10} = \frac{2}{9} \cdot (-3)^9 = \frac{2}{9} \cdot -19683 = -43758. \] 3. **Term Equal to -486**: Set the general term equal to -486: \[ \frac{2}{9} \cdot (-3)^{n-1} = -486. \] Simplifying, we find \( (-3)^{n-1} = -486 \cdot \frac{9}{2} = -2187 \). Since \( -2187 = -3^7 \), it implies \( n - 1 = 7 \) or \( n = 8 \). 4. **Number of Terms**: The sequence ends at 1062882. Solve for \( n \): \[ \frac{2}{9} \cdot (-3)^{n-1} = 1062882. \] This yields \( (-3)^{n-1} = 1062882 \cdot \frac{9}{2} = 4779963 \). Since \( 4779963 = 3^{12} \), we find \( n - 1 = 12 \) or \( n = 13 \). In summary, the answers to your prompts are: 1. \( a_n = \frac{2}{9} \cdot (-3)^{n-1} \) 2. The 10th term is \( -43758 \). 3. The term equal to -486 is the 8th term. 4. There are 13 terms in the sequence.