Pregunta
upstudy study bank question image url

© BFW Publishers Suppose Kristen is researching failures in the restaurant business. In the city where she lives, the probability that an independent restaurant will fail in the first year is \( 51 \% \). She obtains a random sample of 84 independent restaurants that opened in her city more than one year ago and determines if each one had closed within a year. What are the mean and standard deviation of the number of restaurants that failed within a year? Please give your answers precise to two decimal places. \[ \mu=\square \quad \sigma=\square \]

Ask by Conner Mckenzie. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The mean number of restaurants that failed within a year is 42.84, and the standard deviation is 4.58.

Solución

To determine the mean (\(\mu\)) and standard deviation (\(\sigma\)) of the number of restaurants that failed within a year, we can use the properties of the binomial distribution. Given: - Probability of failure (\(p\)) = 51% or 0.51 - Sample size (\(n\)) = 84 ### Mean (\(\mu\)) The mean of a binomial distribution is calculated as: \[ \mu = n \times p \] \[ \mu = 84 \times 0.51 = 42.84 \] ### Standard Deviation (\(\sigma\)) The standard deviation of a binomial distribution is calculated as: \[ \sigma = \sqrt{n \times p \times (1 - p)} \] \[ \sigma = \sqrt{84 \times 0.51 \times 0.49} = \sqrt{20.9916} \approx 4.58 \] ### Final Answer \[ \mu = 42.84 \quad \sigma = 4.58 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the mean (\(\mu\)) and the standard deviation (\(\sigma\)) of the number of restaurants that failed within a year, we can use the properties of a binomial distribution since each restaurant either fails or does not with a fixed probability. 1. **Mean (\(\mu\))**: The mean of a binomial distribution can be calculated using the formula: \[ \mu = n \cdot p \] where \(n\) is the number of trials (restaurants) and \(p\) is the probability of success (failure in this context). Given: - \(n = 84\) - \(p = 0.51\) So, \[ \mu = 84 \cdot 0.51 = 42.84 \] 2. **Standard Deviation (\(\sigma\))**: The standard deviation of a binomial distribution can be calculated using the formula: \[ \sigma = \sqrt{n \cdot p \cdot (1 - p)} \] Here, \(1 - p = 0.49\). Therefore, \[ \sigma = \sqrt{84 \cdot 0.51 \cdot 0.49} \] \[ = \sqrt{84 \cdot 0.2499} \approx \sqrt{21} \approx 4.58 \] Thus, the answers are: \[ \mu = 42.84 \quad \sigma = 4.58 \]

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad