Find the effective annual yield for a passbook savings account that has a rate of \( 9 \% \) compounded monthly, Round the answer to the nearest tenth of a percent. \( .0 .0938 \% \) \( 10.0 \% \) \( 9.0 \% \) \( 9.4 \% \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the effective annual yield, you can use the formula: \[ EAY = \left(1 + \frac{r}{n}\right)^{nt} - 1 \] where \( r \) is the nominal interest rate (0.09), \( n \) is the number of compounding periods per year (12 for monthly), and \( t \) is the number of years (1 for annual yield). Plugging in the values: \[ EAY = \left(1 + \frac{0.09}{12}\right)^{12 \cdot 1} - 1 \approx \left(1 + 0.0075\right)^{12} - 1 \approx (1.0075)^{12} - 1 \approx 0.0942 \text{ or } 9.42\% \] Rounding to the nearest tenth of a percent gives an effective annual yield of approximately **9.4%**. If you’re ever unsure about interest rates, remember that compounding can make a significant difference! Many people overlook how often interest is applied, which can result in missed earnings. It’s always a good idea to check multiple sources when calculating financial yields. Online calculators can simplify these processes, preventing common mistakes like miscalculating the compounding periods or using incorrect formulas!