Pregunta
upstudy study bank question image url

Question 2
If R35 000 accumulates to R48 320 at a continuous compounding rate of per year, determine the term
under consideration in years to two decimal places.

Ask by Coles Rodriquez. in South Africa
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The term under consideration is approximately 3.75 years.

Solución

To determine the term under consideration in years, we can use the formula for continuous compounding:
where:
  • is the amount after the term,
  • is the principal amount (initial amount),
  • is the continuous compounding rate,
  • is the term in years.
Given:
  • (amount after the term),
  • (principal amount),
  • (continuous compounding rate).
We need to solve for (term in years).
Substitute the given values into the formula:
Now, we can solve for using the formula:
Let’s calculate the value of using the formula.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Reduce the fraction:
  • step2: Rewrite the expression:
  • step3: Multiply by the reciprocal:
  • step4: Multiply the terms:
  • step5: Multiply the terms:

    The term under consideration in years is approximately 3.75 years to two decimal places.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the term in years, we can use the formula for continuous compounding:
Where:
  • is the final amount (R48,320)
  • is the principal amount (R35,000)
  • is the rate of interest (0.086)
  • is the time in years
Rearranging the formula to solve for :
Plugging in the values:
Calculating:
So, the term under consideration is approximately 3.80 years.

Did you know that continuous compounding takes the idea of interest on interest to the next level? It mathematically implies that interest is calculated at every possible moment, which leads to greater accumulation compared to periodic compounding. This is why continuous compounding is often seen in finance for things like investments and savings accounts, making your money work harder and grow more over time!
For further exploration, consider diving into concepts like discrete vs. continuous compounding. Books like “The Mathematics of Finance” by Robert G. Donnelly offer great insight. You’ll learn about interest rates, annuities, and even delve into some investing strategies that can maximize your returns over time. Plus, there are plenty of online platforms offering interactive courses that can make diving into finance concepts more enjoyable!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad