Pregunta
upstudy study bank question image url

Graph the line that passes through 24. \( (-3,-2) ; m=2 \)

Ask by Todd Tyler. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph the line passing through \((-3, -2)\) with a slope of 2, use the equation \(y = 2x + 4\). Plot the y-intercept at \((0, 4)\) and another point like \((1, 6)\). Draw a straight line through these points to represent the line.

Solución

To graph the line that passes through the point \((-3, -2)\) with a slope \(m = 2\), we can use the point-slope form of the equation of a line, which is given by: \[ y - y_1 = m(x - x_1) \] where \((x_1, y_1)\) is a point on the line and \(m\) is the slope. ### Step 1: Substitute the known values Here, \((x_1, y_1) = (-3, -2)\) and \(m = 2\). Substituting these values into the equation gives: \[ y - (-2) = 2(x - (-3)) \] This simplifies to: \[ y + 2 = 2(x + 3) \] ### Step 2: Simplify the equation Now, we can simplify this equation: \[ y + 2 = 2x + 6 \] Subtracting 2 from both sides: \[ y = 2x + 4 \] ### Step 3: Graph the line To graph the line \(y = 2x + 4\): 1. **Identify the y-intercept**: The y-intercept is \(4\) (where the line crosses the y-axis). 2. **Use the slope**: The slope \(2\) means that for every 1 unit you move to the right (positive x-direction), you move up 2 units (positive y-direction). ### Step 4: Plot points - Start at the y-intercept \((0, 4)\). - From there, move right 1 unit to \(x = 1\) and up 2 units to \(y = 6\), giving the point \((1, 6)\). - You can also go left from the y-intercept: move left 1 unit to \(x = -1\) and down 2 units to \(y = 2\), giving the point \((-1, 2)\). ### Final Graph You can now draw a straight line through the points \((-3, -2)\), \((0, 4)\), and \((1, 6)\) to represent the line \(y = 2x + 4\). If you have graphing software or graph paper, you can plot these points and draw the line accordingly.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the line that passes through the point \((-3,-2)\) with a slope \(m=2\), start at the point \((-3,-2)\) on the coordinate plane. From there, use the slope to find another point: since the slope is \(2\), for every \(1\) unit you move to the right (the run), you move up \(2\) units (the rise). This takes you from \((-3,-2)\) to \((-2,0)\). Plot the point \((-2,0)\) and draw a straight line through both points, extending it in both directions. A fun fact about lines is that every unique pair of points defines exactly one line. So if you have a different pair of points, don’t worry—you can always create a new graph! Just remember that the key elements are the points you start with and the slope, which tells you how steeply the line rises or falls. Get those coordinates plotted and watch your line come to life!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad