Sally Finkelstein has a recipe that calls for horseradish sauce that is \( 65 \% \) pure horseradish. At the grocery store she finds one horseradish sauce that is \( 30 \% \) pure horseradish and another that is \( 80 \% \) pure horseradish. How many teaspoons of each of these horseradish sauces should Sally mix together to get 8 teaspoons of horseradish sauce that is \( 65 \% \) pure horseradish? The number of teaspoons of \( 30 \% \) pure horseradish sauce is (Type an integer or a decimal.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve this problem, let's denote: - \( x \) = the number of teaspoons of the \( 30\% \) horseradish sauce - \( y \) = the number of teaspoons of the \( 80\% \) horseradish sauce We have two main equations based on the information provided: 1. The total mixture should equal 8 teaspoons: \[ x + y = 8 \] 2. The total amount of pure horseradish in the mixture should equal the amount in the \( 65\% \) solution: \[ 0.3x + 0.8y = 0.65 \times 8 \] which simplifies to \[ 0.3x + 0.8y = 5.2 \] Now we can solve these equations. From the first equation, we can express \( y \) in terms of \( x \): \[ y = 8 - x \] Next, substitute \( y \) in the second equation: \[ 0.3x + 0.8(8 - x) = 5.2 \] Distributing the \( 0.8 \): \[ 0.3x + 6.4 - 0.8x = 5.2 \] Combining like terms: \[ -0.5x + 6.4 = 5.2 \] Subtract \( 6.4 \) from both sides: \[ -0.5x = 5.2 - 6.4 \] \[ -0.5x = -1.2 \] Now, divide by \( -0.5 \): \[ x = \frac{-1.2}{-0.5} = 2.4 \] Now, we can find \( y \): \[ y = 8 - 2.4 = 5.6 \] Thus, the number of teaspoons of \( 30\% \) pure horseradish sauce that Sally should use is \( 2.4 \) teaspoons.