Pregunta
upstudy study bank question image url

1 Points] DETAILS MY NOTES AUFEXC4 7.6.016.MI. Use a calculator to estimate the value of the following. Round to the nearest ten-thousandth. \( \cos 29.5^{\circ} \) Need Help? Read It Master It SUBMIT ANSWER

Ask by Riley Rose. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \cos 29.5^{\circ} \approx 0.8704 \)

Solución

To estimate the value of \( \cos 29.5^{\circ} \) and round it to the nearest ten-thousandth, follow these steps: ### Step 1: Understand the Angle \( 29.5^{\circ} \) can be seen as \( 30^{\circ} - 0.5^{\circ} \). We'll use the cosine difference formula for better accuracy: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] Where: - \( A = 30^{\circ} \) - \( B = 0.5^{\circ} \) ### Step 2: Calculate \(\cos 30^{\circ}\) and \(\sin 30^{\circ}\) \[ \cos 30^{\circ} = \frac{\sqrt{3}}{2} \approx 0.8660254 \] \[ \sin 30^{\circ} = 0.5 \] ### Step 3: Estimate \(\cos 0.5^{\circ}\) and \(\sin 0.5^{\circ}\) For very small angles in radians (\( \theta \approx 0.008726646 \) radians for \( 0.5^{\circ} \)), we can use the following approximations: \[ \cos \theta \approx 1 - \frac{\theta^2}{2} \approx 0.9999619 \] \[ \sin \theta \approx \theta \approx 0.008726535 \] ### Step 4: Apply the Cosine Difference Formula \[ \cos(29.5^{\circ}) = \cos(30^{\circ} - 0.5^{\circ}) \approx 0.8660254 \times 0.9999619 + 0.5 \times 0.008726535 \] \[ \approx 0.8660254 \times 0.9999619 + 0.0043632675 \] \[ \approx 0.8659924 + 0.0043632675 \] \[ \approx 0.8703557 \] ### Step 5: Round to the Nearest Ten-Thousandth \[ \cos(29.5^{\circ}) \approx 0.8704 \] **Answer:** \( \cos 29.5^{\circ} \approx 0.8704 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Back in the day, mathematicians didn’t have calculators; they relied on trigonometric tables and their trusty compasses! The cosine function, which you’re about to calculate, stems from ancient geometry, particularly in defining relationships in triangles. The value of \( \cos 29.5^{\circ} \) can be found using these trigonometric relationships that have been passed down and refined over the centuries. In practical terms, calculating \( \cos \) values can come in handy in numerous real-world scenarios, like in engineering, architecture, and even computer graphics! For example, when designing a ramp, understanding the angle can help in ensuring that it’s safe for use and follows proper regulations. So go ahead, whip out that calculator, and round your answer to the nearest ten-thousandth!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad