Pregunta
upstudy study bank question image url

The average value of a function \( f \) over the interval \( [-1,2] \) is -4 , and the average value of \( f \) over the interval \( [2,7] \) is 8 . What is the average value of \( f \) over the interval \( [-1,7] \) ? (A) 2 (C) \( \frac{1}{2} \) (D) 14

Ask by Zimmerman Lang. in the United States
Feb 02,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The average value of \( f \) over the interval \( [-1,7] \) is \( \frac{7}{2} \) or 3.5. **Answer:** \( \frac{7}{2} \)

Solución

To determine the average value of the function \( f \) over the interval \( [-1,7] \), we'll use the information provided about the average values over the subintervals \( [-1,2] \) and \( [2,7] \). 1. **Calculate the Integral Over Each Subinterval:** - **For \( [-1,2] \):** - **Average Value (\( A_1 \))**: \(-4\) - **Length of Interval**: \(2 - (-1) = 3\) - **Integral**: \( \int_{-1}^{2} f(x) \, dx = A_1 \times \text{Length} = -4 \times 3 = -12 \) - **For \( [2,7] \):** - **Average Value (\( A_2 \))**: \(8\) - **Length of Interval**: \(7 - 2 = 5\) - **Integral**: \( \int_{2}^{7} f(x) \, dx = A_2 \times \text{Length} = 8 \times 5 = 40 \) 2. **Compute the Total Integral Over \( [-1,7] \):** \[ \int_{-1}^{7} f(x) \, dx = \int_{-1}^{2} f(x) \, dx + \int_{2}^{7} f(x) \, dx = -12 + 40 = 28 \] 3. **Determine the Average Value Over \( [-1,7] \):** - **Total Length of Interval**: \(7 - (-1) = 8\) - **Average Value (\( A \))**: \[ A = \frac{\text{Total Integral}}{\text{Total Length}} = \frac{28}{8} = 3.5 \] \[ 3.5 = \frac{7}{2} \] **Conclusion:** The average value of \( f \) over the interval \( [-1,7] \) is \( \frac{7}{2} \) or **3.5**. **Answer:** \( \frac{7}{2} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the average value of \( f \) over the interval \( [-1, 7] \), we first need to use the formula for the average value of a function over an interval \([a, b]\): \[ \text{Average value} = \frac{1}{b-a} \int_a^b f(x) \, dx \] We know the average value of \( f \) from \([-1, 2]\) is -4, which gives us: \[ -4 = \frac{1}{2 - (-1)} \int_{-1}^{2} f(x) \, dx = \frac{1}{3} \int_{-1}^{2} f(x) \, dx \] Multiplying by 3, we find: \[ \int_{-1}^{2} f(x) \, dx = -12 \] Now, for the interval \([2, 7]\), the average value is 8: \[ 8 = \frac{1}{7 - 2} \int_{2}^{7} f(x) \, dx = \frac{1}{5} \int_{2}^{7} f(x) \, dx \] Multiplying by 5, we find: \[ \int_{2}^{7} f(x) \, dx = 40 \] Now, we can add these integrals to find the total integral over \([-1, 7]\): \[ \int_{-1}^{7} f(x) \, dx = \int_{-1}^{2} f(x) \, dx + \int_{2}^{7} f(x) \, dx = -12 + 40 = 28 \] The length of the interval \([-1, 7]\) is: \[ 7 - (-1) = 8 \] Now we calculate the average value over the interval \([-1, 7]\): \[ \text{Average value} = \frac{1}{8} \int_{-1}^{7} f(x) \, dx = \frac{28}{8} = 3.5 \] Thus, the average value of \( f \) over the interval \([-1, 7]\) is not among the options provided. However, let's see which is the closest choice. None fits 3.5 exactly. If you want to make further calculations or rounds, revise based on context, or check provided options.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad