roblem 5 onsider the problem: It takes one week for a crew of workers to pave \( \frac{3}{5} \) kilometer of a At that rate, how long will it take to pave 1 kilometer? te a multiplication equation and a division equation to represent the question. Then the answer and show your reasoning.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To determine how long it takes to pave 1 kilometer, we can first find the rate of paving per week. Since it takes one week to pave \( \frac{3}{5} \) kilometer, the rate is: 1 week = \( \frac{3}{5} \) kilometer. Now, to find out how long it takes to pave 1 kilometer, we need to set up a multiplication equation. If we let \( x \) represent the number of weeks it takes to pave 1 kilometer, we can write: \[ x \cdot \frac{3}{5} = 1 \] To find \( x \), we can rearrange the equation: \[ x = 1 \div \frac{3}{5} = 1 \cdot \frac{5}{3} = \frac{5}{3} \text{ weeks} \] Thus, it will take \( \frac{5}{3} \) weeks, which is equivalent to 1 week and 2 days, to pave 1 kilometer. Now, it’s important to make sure to convert measurements properly when calculating paving times to avoid the common mistake of misestimating the scaling factor based on the distance!