Pregunta
upstudy study bank question image url

20. Diet Habits A federal report indicated that \( 27 \% \) of children ages 2 to 5 years had a good diet-an increase over previous years. How large a sample is needed to estimate the true proportion of children with good diets within \( 2 \% \) with \( 95 \% \) confidence?

Ask by Jimenez Fitzgerald. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A sample size of at least 1893 children is needed to estimate the true proportion of children with good diets within 2% with 95% confidence.

Solución

To estimate the true proportion of children with good diets within 2% with 95% confidence, we can use the formula for the sample size required for estimating a population proportion: \[ n = \left( \frac{Z_{\alpha/2}}{E} \right)^2 \times p \times (1-p) \] where: - \( n \) is the sample size required - \( Z_{\alpha/2} \) is the Z-score corresponding to the desired confidence level (95% in this case) - \( E \) is the margin of error (2% in this case) - \( p \) is the estimated proportion of children with good diets (27% in this case) First, we need to find the Z-score corresponding to 95% confidence. The Z-score for 95% confidence is approximately 1.96. Next, we can substitute the given values into the formula to calculate the sample size required. Calculate the value by following steps: - step0: Calculate: \(\left(\frac{1.96}{0.02}\right)^{2}\times 0.27\left(1-0.27\right)\) - step1: Divide the terms: \(98^{2}\times 0.27\left(1-0.27\right)\) - step2: Subtract the numbers: \(98^{2}\times 0.27\times 0.73\) - step3: Multiply the terms: \(98^{2}\times 0.1971\) - step4: Rewrite the expression: \(9604\times 0.1971\) - step5: Multiply the numbers: \(1892.9484\) The sample size required to estimate the true proportion of children with good diets within 2% with 95% confidence is approximately 1892.95. Therefore, a sample size of at least 1893 children is needed to achieve the desired level of accuracy and confidence.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the required sample size for estimating the true proportion, you can use the formula for sample size in proportion studies: \[ n = \left( \frac{Z^2 \cdot p \cdot (1 - p)}{E^2} \right) \] Where: - \( n \) = required sample size - \( Z \) = Z-value (for 95% confidence, Z ≈ 1.96) - \( p \) = estimated proportion (0.27 in this case) - \( E \) = margin of error (0.02 for a 2% error) Plugging these values into the formula: \[ n = \left( \frac{(1.96)^2 \cdot 0.27 \cdot (1 - 0.27)}{(0.02)^2} \right) \] Calculating this gives: \[ n = \left( \frac{3.8416 \cdot 0.27 \cdot 0.73}{0.0004} \right) \] \[ n = \left( \frac{0.0732114}{0.0004} \right) \approx 183.03 \] Since you can't sample a fraction of a person, you round up to the nearest whole number. Therefore, a sample size of **184** is needed to estimate the true proportion with the desired accuracy and confidence level.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad