Pregunta
upstudy study bank question image url

A roulette wheel has 40 slots around the rim, 38 slots are numbered from 11 to 38 . Half of these 38 slots are red, and the other half are black. The remaining 2 slots are numbered 0 and 00 and are green. As the rouleme wheel is spun in one direction, a small ivory ball is rolled along the rim in opposite direction. The ball has an equality likely chance of falling into any one of the 40 slots. Find the probabilities of the events listed in parts ( through (d) below. c. Ball does not land on a number from 25 through 29 The probability of the event that the ball does not land of a number from 25 through 29 is \( \frac{7}{8} \) (Type an integer or a simplified fraction.) d. Ball lands on an even number or on a green slot The probability of the event that the ball lands on an even number or on a green slot is \( \square \). (Type an integer or a simplified fraction.)

Ask by Henry Colon. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of the ball landing on an even number or on a green slot is \( \frac{2}{5} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To find the probability that the ball lands on an even number or on a green slot, let's first break down the total number of outcomes and favorable outcomes. There are 40 slots in total. Out of the 38 numbered slots (11 to 38), the even numbers are: 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, and 38, making a total of 14 even numbers. Additionally, there are 2 green slots (0 and 00). To find the total number of favorable outcomes, we need to add the even numbers (14) to the green slots (2) but ensure that we don't count them twice. Since none of the green slots are even, we simply add them together: Number of favorable outcomes = Even numbers + Green slots = 14 + 2 = 16. Now, the probability is calculated as the number of favorable outcomes divided by the total number of outcomes: \[ P(\text{even or green}) = \frac{16}{40} = \frac{2}{5}. \] Therefore, the probability that the ball lands on an even number or on a green slot is \( \frac{2}{5} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad