Pregunta
b) \( \left(2^{3} \times 2^{2}\right) \div 2^{7} \)
Ask by Ellis Schneider. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\left(2^{3} \times 2^{2}\right) \div 2^{7} = \frac{1}{4}
\]
Solución
To simplify the expression \( \left(2^{3} \times 2^{2}\right) \div 2^{7} \), we can use the properties of exponents. Let's break it down step by step.
### Step 1: Multiply the Powers with the Same Base
When multiplying two exponents with the same base, you add the exponents:
\[
2^{3} \times 2^{2} = 2^{3+2} = 2^{5}
\]
So the expression becomes:
\[
\frac{2^{5}}{2^{7}}
\]
### Step 2: Divide the Powers with the Same Base
When dividing two exponents with the same base, you subtract the exponents:
\[
\frac{2^{5}}{2^{7}} = 2^{5-7} = 2^{-2}
\]
### Step 3: Simplify the Negative Exponent
A negative exponent indicates the reciprocal of the base raised to the absolute value of the exponent:
\[
2^{-2} = \frac{1}{2^{2}} = \frac{1}{4}
\]
### Final Answer
\[
\left(2^{3} \times 2^{2}\right) \div 2^{7} = \frac{1}{4}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
Let’s break this down! First, by using the property of exponents, we can combine the terms in the numerator: \( 2^{3} \times 2^{2} = 2^{5} \). Now, you have: \[ \frac{2^{5}}{2^{7}} = 2^{5-7} = 2^{-2} \] This simplifies to \( \frac{1}{2^{2}} = \frac{1}{4} \). So, the final answer is \( \frac{1}{4} \). Isn’t exponent math fun? It’s like giving your calculations a turbo boost!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium