Pregunta
upstudy study bank question image url

A function, named \( g \), has an input of \( c \) and a range of all real numbers. Which option best represents the described function? \( g(c)=4 c^{2}-2 c+1 \) \( g(c)=\frac{4}{5} c+\frac{2}{5} \) \( c(g)=\frac{4}{5} g+\frac{2}{5} \) \( c(g)=4 g^{2}-2 g+1 \)

Ask by Logan Deleon. in the United States
Feb 07,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The best option is \( g(c) = \frac{4}{5}c + \frac{2}{5} \).

Solución

To determine the correct option, consider two key points from the description: 1. The function is named g and its input is c. 2. The function's range is all real numbers. Let's evaluate each choice: • g(c) = 4c² - 2c + 1 This is a quadratic (parabolic) function. A quadratic function with a nonzero leading coefficient typically has a restricted range (either all values greater than or equal to a minimum or less than or equal to a maximum). Thus, its range is not all real numbers. • g(c) = (4/5)c + (2/5) This is a linear function. Since it has a nonzero slope (4/5), it is a one-to-one function mapping every real number c to a unique real number. Its range is all real numbers. Also, the function properly shows g as a function of c. • c(g) = (4/5)g + (2/5) Here, the function is written as c in terms of g, which does not match the requirement that the function be g with input c. • c(g) = 4g² - 2g + 1 Similarly, this is a quadratic function defined in terms of g and does not meet the criteria of having g as the function name with input c. Thus, the option that best represents the described function is: g(c) = (4/5)c + (2/5)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( g(c) = 4c^2 - 2c + 1 \) is a quadratic function. It opens upwards (since the coefficient of \( c^2 \) is positive) and its range is all real numbers greater than or equal to its vertex value. By calculating the vertex, we find that the minimum value occurs at \( c = \frac{1}{4} \), leading to a minimum output of \( g\left(\frac{1}{4}\right) = \frac{1}{4} \). Thus, this function does not have a range of all real numbers. In contrast, the linear function \( g(c) = \frac{4}{5}c + \frac{2}{5} \) has a range that covers all real numbers. Since it is a straight line, for every value of \( c \), there exists a corresponding real value of \( g(c) \), meeting the criteria of the range being all real numbers. This makes it the best option for the given description.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad