Pregunta
(16.) \( \sqrt{\frac{15 x}{x^{3}}} \)
Ask by Barrett Lynch. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\sqrt{\frac{15x}{x^{3}}} = \frac{\sqrt{15}}{x}
\]
Solución
To simplify the expression:
\[
\sqrt{\frac{15x}{x^{3}}}
\]
let's follow the steps below:
### Step 1: Simplify the Fraction Inside the Square Root
First, simplify the fraction \(\frac{15x}{x^{3}}\).
Recall that \(x^{3} = x \cdot x \cdot x\), so:
\[
\frac{15x}{x^{3}} = \frac{15x}{x \cdot x \cdot x} = \frac{15}{x^{2}}
\]
### Step 2: Rewrite the Square Root
Now, the expression becomes:
\[
\sqrt{\frac{15}{x^{2}}}
\]
This can be separated into the square root of the numerator and the square root of the denominator:
\[
\sqrt{15} \div \sqrt{x^{2}}
\]
### Step 3: Simplify the Square Root of the Denominator
The square root of \(x^{2}\) is \(x\) (assuming \(x > 0\)):
\[
\sqrt{x^{2}} = x
\]
### Step 4: Combine the Simplified Parts
Putting it all together:
\[
\frac{\sqrt{15}}{x}
\]
### Final Simplified Form
\[
\sqrt{\frac{15x}{x^{3}}} = \frac{\sqrt{15}}{x}
\]
**Note:** This simplification assumes that \(x > 0\). If \(x\) can be negative, the absolute value should be considered:
\[
\sqrt{\frac{15x}{x^{3}}} = \frac{\sqrt{15}}{|x|}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To simplify \( \sqrt{\frac{15 x}{x^{3}}} \), we start by rewriting the expression inside the square root. This gives us: \[ \sqrt{\frac{15 x}{x^{3}}} = \sqrt{\frac{15}{x^{2}}} \] Next, we can separate the square root: \[ \sqrt{15} \cdot \sqrt{\frac{1}{x^{2}}} = \sqrt{15} \cdot \frac{1}{x} = \frac{\sqrt{15}}{x} \] Thus, the simplified expression is: \[ \frac{\sqrt{15}}{x} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium