Pregunta

Practice 1: During a thunderslam, Nasaean used a whd speed gauge to measure the whd gusts. The whd gusts, in miles per hour, were \( 19, 24, 10, 15, 21, 35 \), and 16. Identify any outliers in the data set. A. 10 B. 15.5 C. 35 D. None

Ask by Martinez Barrett. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

35 is an outlier in the data set.

Solución

To identify any outliers in the data set, we need to calculate the mean and standard deviation of the given whd gusts. Given data set: \( 19, 24, 10, 15, 21, 35, 16 \) 1. Calculate the mean of the data set: \[ \text{Mean} = \frac{\text{Sum of all values}}{\text{Total number of values}} \] 2. Calculate the standard deviation of the data set: \[ \text{Standard Deviation} = \sqrt{\frac{\text{Sum of squared differences from mean}}{\text{Total number of values} - 1}} \] After calculating the mean and standard deviation, we can identify any outliers by comparing the values with the mean and standard deviation. Let's calculate the mean and standard deviation of the given data set. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(19+24+10+15+21+35+16\right)}{7}\) - step1: Remove the parentheses: \(\frac{19+24+10+15+21+35+16}{7}\) - step2: Add the numbers: \(\frac{140}{7}\) - step3: Reduce the numbers: \(\frac{20}{1}\) - step4: Calculate: \(20\) Calculate or simplify the expression \( \sqrt{\frac{(19-20)^2+(24-20)^2+(10-20)^2+(15-20)^2+(21-20)^2+(35-20)^2+(16-20)^2}{7-1}} \). Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{\left(19-20\right)^{2}+\left(24-20\right)^{2}+\left(10-20\right)^{2}+\left(15-20\right)^{2}+\left(21-20\right)^{2}+\left(35-20\right)^{2}+\left(16-20\right)^{2}}{7-1}}\) - step1: Subtract the numbers: \(\sqrt{\frac{\left(-1\right)^{2}+\left(24-20\right)^{2}+\left(10-20\right)^{2}+\left(15-20\right)^{2}+\left(21-20\right)^{2}+\left(35-20\right)^{2}+\left(16-20\right)^{2}}{7-1}}\) - step2: Subtract the numbers: \(\sqrt{\frac{\left(-1\right)^{2}+4^{2}+\left(10-20\right)^{2}+\left(15-20\right)^{2}+\left(21-20\right)^{2}+\left(35-20\right)^{2}+\left(16-20\right)^{2}}{7-1}}\) - step3: Subtract the numbers: \(\sqrt{\frac{\left(-1\right)^{2}+4^{2}+\left(-10\right)^{2}+\left(15-20\right)^{2}+\left(21-20\right)^{2}+\left(35-20\right)^{2}+\left(16-20\right)^{2}}{7-1}}\) - step4: Subtract the numbers: \(\sqrt{\frac{\left(-1\right)^{2}+4^{2}+\left(-10\right)^{2}+\left(-5\right)^{2}+\left(21-20\right)^{2}+\left(35-20\right)^{2}+\left(16-20\right)^{2}}{7-1}}\) - step5: Subtract the numbers: \(\sqrt{\frac{\left(-1\right)^{2}+4^{2}+\left(-10\right)^{2}+\left(-5\right)^{2}+1^{2}+\left(35-20\right)^{2}+\left(16-20\right)^{2}}{7-1}}\) - step6: Subtract the numbers: \(\sqrt{\frac{\left(-1\right)^{2}+4^{2}+\left(-10\right)^{2}+\left(-5\right)^{2}+1^{2}+15^{2}+\left(16-20\right)^{2}}{7-1}}\) - step7: Subtract the numbers: \(\sqrt{\frac{\left(-1\right)^{2}+4^{2}+\left(-10\right)^{2}+\left(-5\right)^{2}+1^{2}+15^{2}+\left(-4\right)^{2}}{7-1}}\) - step8: Evaluate the power: \(\sqrt{\frac{1+4^{2}+\left(-10\right)^{2}+\left(-5\right)^{2}+1^{2}+15^{2}+\left(-4\right)^{2}}{7-1}}\) - step9: Evaluate the power: \(\sqrt{\frac{1+4^{2}+\left(-10\right)^{2}+\left(-5\right)^{2}+1+15^{2}+\left(-4\right)^{2}}{7-1}}\) - step10: Add the numbers: \(\sqrt{\frac{384}{7-1}}\) - step11: Subtract the numbers: \(\sqrt{\frac{384}{6}}\) - step12: Divide the terms: \(\sqrt{64}\) - step13: Write in exponential form: \(\sqrt{8^{2}}\) - step14: Simplify the root: \(8\) The mean of the given data set is 20 and the standard deviation is 8. Now, let's compare the values in the data set with the mean and standard deviation to identify any outliers. Outliers are values that are significantly higher or lower than the mean. In this case, the value 35 is significantly higher than the mean (20) and is more than 2 standard deviations away from the mean. Therefore, 35 is an outlier in the data set. So, the correct answer is: C. 35

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To identify outliers in the dataset, we first find the mean and standard deviation of the provided speeds: \( 19, 24, 10, 15, 21, 35, 16 \). The mean is approximately 19.14 mph. Using the 1.5 IQR rule or standard deviations, any value that falls significantly outside the range defined by the rest of the data can be flagged. In this case, 35 mph stands out as an outlier since it is much higher than the other values. So, the correct answer is C. 35. To understand more about how to identify outliers effectively, remember that a common rule of thumb is to calculate the interquartile range (IQR). By finding the first (Q1) and third quartiles (Q3) and applying the formula: Q1 - 1.5(IQR) and Q3 + 1.5(IQR), you can effectively find those pesky outliers lurking in your data!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad