\( \$ 900 \) are deposited in an account with \( 4 \% \) interest rate, compounded continuously. What is the balance after 10 years? \[ F=\$[?] \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the balance after 10 years with continuous compounding, you can use the formula \( F = Pe^{rt} \), where \( P \) is the principal amount, \( r \) is the interest rate, and \( t \) is the time in years. Here, \( P = 900 \), \( r = 0.04 \), and \( t = 10 \). Plugging in the values, we get: \[ F = 900 \cdot e^{0.04 \cdot 10} \] Calculating \( e^{0.4} \approx 1.4918 \): \[ F \approx 900 \cdot 1.4918 \approx 1342.62 \] Thus, the balance after 10 years is approximately \( \$1342.62 \).