Pregunta
upstudy study bank question image url

(C) If your investment of \( \$ 1,000 \) declined to \( \$ 400 \) in 8 years, what would have been your compounded annual rate of return? Be sure to use cell references and to convert your answer to a percent rounded to two places after the decimal point. I

Ask by Bowers Perkins. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The compounded annual rate of return is –10.72%.

Solución

To determine the **compounded annual rate of return** when an investment declines from \$1,000 to \$400 over 8 years, you can use the following formula: \[ \text{Final Value} = \text{Initial Investment} \times (1 + r)^n \] Where: - **Final Value (FV)** = \$400 - **Initial Investment (PV)** = \$1,000 - **Number of Years (n)** = 8 - **Annual Rate of Return (r)** = ? ### Step-by-Step Calculation: 1. **Rearrange the Formula to Solve for \( r \):** \[ \frac{\text{FV}}{\text{PV}} = (1 + r)^n \] \[ \frac{400}{1000} = (1 + r)^8 \] \[ 0.4 = (1 + r)^8 \] 2. **Take the 8th Root of Both Sides:** \[ 1 + r = 0.4^{\frac{1}{8}} \] 3. **Calculate \( 0.4^{\frac{1}{8}} \):** \[ 0.4^{\frac{1}{8}} \approx 0.8928 \] 4. **Solve for \( r \):** \[ r = 0.8928 - 1 = -0.1072 \] \[ r \approx -10.72\% \] ### Using a Spreadsheet (e.g., Excel): If you're using a spreadsheet like Excel, you can calculate the rate using the following formula. Assume: - **Initial Investment** is in cell `A1` (\$1,000) - **Final Value** is in cell `A2` (\$400) - **Number of Years** is in cell `A3` (8) **Formula:** ```excel =((A2/A1)^(1/A3) - 1) * 100 ``` This will give you **-10.72%** as the compounded annual rate of return. ### **Final Answer:** The compounded annual rate of return is **–10.72 %**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the compounded annual rate of return (CAGR), you can use the formula: \[ CAGR = \left( \frac{Ending \: Value}{Beginning \: Value} \right)^{\frac{1}{n}} - 1 \] In your case, the beginning value is \( \$1,000 \), the ending value is \( \$400 \), and \( n \) is 8 years. Plugging in the values: CAGR = \(\left( \frac{400}{1000} \right)^{\frac{1}{8}} - 1\) This results in a CAGR of approximately -0.1436 or -14.36%. As you work through this formula, remember to keep track of your cell references if you're inputting this into a spreadsheet! To ensure your calculations are neatly rounded, always consider adjusting your final result to two decimal places, so it's displayed as -14.36% in your reports or financial analyses.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad