factorise \( x^{2}+3 x+2 x^{2}+3 x+2 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To factorise \( x^{2}+3 x+2 x^{2}+3 x+2 \), first, let's combine like terms: \[ x^{2} + 2x^{2} + 3x + 3x + 2 = 3x^{2} + 6x + 2 \] Now, we can factor out the greatest common factor from the expression: \[ 3x^{2} + 6x + 2 = 3(x^{2} + 2x + \frac{2}{3}) \] We need to express \( x^{2} + 2x + \frac{2}{3} \) in its factored form. Unfortunately, this polynomial doesn't factor nicely using integers, but we can complete the square or use the quadratic formula if we're looking for roots. For our purposes, however, it can remain as is or be approximated further if necessary. Thus, the final factorized expression is: \[ 3 \left(x^{2} + 2x + \frac{2}{3}\right) \]