Pregunta
upstudy study bank question image url

\( \$ 1000 \) were deposited into an account with a \( 7 \% \) interest rate, compounded continuously. How many years was it in the bank if the current amount is \( \$ 2500 \) ? \[ \mathrm{t}=[?] \text { years } \] Round to the nearest year.

Ask by Lyons Bradley. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The money was in the bank for approximately 13 years.

Solución

To solve this problem, we can use the formula for continuous compounding of interest: \[ A = P e^{rt} \] where: - \( A \) is the current amount in the account, - \( P \) is the initial deposit, - \( r \) is the interest rate, - \( t \) is the time in years. Given: - Initial deposit \( P = \$1000 \), - Interest rate \( r = 7\% = 0.07 \), - Current amount \( A = \$2500 \). We need to find the time \( t \) in years. Substitute the given values into the formula: \[ 2500 = 1000 e^{0.07t} \] Now, we can solve for \( t \) by rearranging the equation: \[ e^{0.07t} = \frac{2500}{1000} \] \[ e^{0.07t} = 2.5 \] Taking the natural logarithm of both sides: \[ 0.07t = \ln(2.5) \] \[ t = \frac{\ln(2.5)}{0.07} \] Now, we can calculate the value of \( t \) using a calculator. Calculate the value by following steps: - step0: Calculate: \(\frac{\ln{\left(2.5\right)}}{0.07}\) - step1: Convert the expressions: \(\frac{\ln{\left(\frac{5}{2}\right)}}{0.07}\) - step2: Rewrite the expression: \(\frac{\ln{\left(\frac{5}{2}\right)}}{\frac{7}{100}}\) - step3: Multiply by the reciprocal: \(\ln{\left(\frac{5}{2}\right)}\times \frac{100}{7}\) - step4: Multiply the terms: \(\frac{\ln{\left(\frac{5}{2}\right)}\times 100}{7}\) - step5: Multiply the terms: \(\frac{100\ln{\left(\frac{5}{2}\right)}}{7}\) The time \( t \) in years is approximately 13.09 years. Therefore, the \$1000 deposited into the account with a 7% interest rate, compounded continuously, was in the bank for approximately 13 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find out how long the money was in the bank, we can use the formula for continuous compounding, which is given by: \[ A = Pe^{rt} \] Where: - \( A \) is the amount of money accumulated after time \( t \) (the current amount), - \( P \) is the principal amount (the initial deposit), - \( r \) is the annual interest rate (decimal), - \( t \) is the time in years, - \( e \) is the base of the natural logarithm, approximately equal to 2.71828. Given: - \( A = 2500 \) - \( P = 1000 \) - \( r = 0.07 \) We can rearrange the formula to solve for \( t \): \[ 2500 = 1000 e^{0.07t} \] Divide both sides by 1000: \[ 2.5 = e^{0.07t} \] Now, take the natural logarithm of both sides: \[ \ln(2.5) = 0.07t \] Now, solve for \( t \): \[ t = \frac{\ln(2.5)}{0.07} \] Calculating the values: \[ t \approx \frac{0.9163}{0.07} \approx 13.09 \] Rounding to the nearest year, the time \( t \) is approximately: \[ \mathrm{t} = 13 \text{ years} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad