Pregunta
\( k-3<-7 \) or \( k+5 \geq 8 \)
Ask by Hodgson Norris. in the United States
Jan 21,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solution to the inequality \( k - 3 < -7 \) or \( k + 5 \geq 8 \) is all real numbers \( k \) such that \( k < -4 \) or \( k \geq 3 \). In interval notation, this is written as \( (-\infty, -4) \cup [3, \infty) \).
Solución
Let's solve the compound inequality:
\[
k - 3 < -7 \quad \text{or} \quad k + 5 \geq 8
\]
**1. Solve \( k - 3 < -7 \):**
\[
k - 3 < -7 \\
\text{Add } 3 \text{ to both sides:} \\
k < -7 + 3 \\
k < -4
\]
**2. Solve \( k + 5 \geq 8 \):**
\[
k + 5 \geq 8 \\
\text{Subtract } 5 \text{ from both sides:} \\
k \geq 8 - 5 \\
k \geq 3
\]
**Combined Solution:**
The solution to the compound inequality is all real numbers \( k \) that satisfy either \( k < -4 \) **or** \( k \geq 3 \).
**In Interval Notation:**
\[
(-\infty, -4) \cup [3, \infty)
\]
**Graphical Representation:**
```
<---|---------|=========>
-4 3
```
- The open circle at -4 indicates that \( k \) can be any number less than -4.
- The closed circle at 3 indicates that \( k \) can be 3 or any number greater than 3.
**Final Answer:**
All real numbers k with k < –4 or k ≥ 3. In interval notation:
(–∞, –4) ∪ [3, ∞)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To solve the inequality \( k-3<-7 \), we can add 3 to both sides to get \( k < -4 \). This means any number less than -4 satisfies this part of the inequality. Now, for the second part, \( k+5 \geq 8 \), subtracting 5 from both sides gives \( k \geq 3 \). So, we have two ranges: \( k < -4 \) or \( k \geq 3 \). The fun twist? You can think of the number line as a party. On one side, numbers less than -4 are on a sad solo mission, while on the other side, numbers 3 and above are party animals living their best lives. So, you can pick your side! 🎉💃
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium