b) \( y=\frac{x}{1-x^{2}} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Did you know that the function \( y=\frac{x}{1-x^{2}} \) is actually a classic example of a rational function? Rational functions are fascinating because they can have vertical and horizontal asymptotes. In this case, vertical asymptotes occur at \( x = 1 \) and \( x = -1 \) where the denominator becomes zero, making the function undefined. Now, let’s put this function into a real-world context! Such functions can model real-life scenarios, like population growth or economics, where the growth rate tends to slow down as resources become limited. By studying its behavior, we can predict trends, optimize resources, and make informed decisions in various fields like business and environmental science.