Pregunta
upstudy study bank question image url

Question
The function has at least one integer root.
Use the integer root theorem to find that root, then proceed to find all
complex roots. (Note: roots may be integer, rational, irrational, and/or
complex.)
Answer Attempt 1 out of 10

Ask by Medina King. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integer roots are and . The rational root is . There are no complex roots.

Solución

To find the integer roots of the polynomial function using the Integer Root Theorem, we will follow these steps:
  1. Identify the possible integer roots: According to the Integer Root Theorem, the possible rational roots of a polynomial are given by the factors of the constant term divided by the factors of the leading coefficient.
    • The constant term is , and its factors are .
    • The leading coefficient is , and its factors are .
    Therefore, the possible integer roots are:
  2. Test the possible integer roots: We will evaluate at each of the integer candidates and .
Let’s calculate , , , and :
  • For :
  • For :
  • For :
  • For :
Now, I will calculate these values.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Evaluate the power:
  • step2: Multiply the terms:
  • step3: Multiply:
  • step4: Simplify:
  • step5: Simplify:
  • step6: Add the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Multiply the terms:
  • step2: Multiply the terms:
  • step3: Multiply the numbers:
  • step4: Evaluate the power:
  • step5: Calculate:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Evaluate the power:
  • step2: Evaluate the power:
  • step3: Multiply:
  • step4: Multiply:
  • step5: Multiply:
  • step6: Simplify:
  • step7: Add the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Multiply the terms:
  • step2: Calculate:
  • step3: Multiply the numbers:
  • step4: Evaluate the power:
  • step5: Calculate:

    The evaluations of the function at the integer candidates are as follows:
Since both and equal , we have found two integer roots: and .
Next, we will factor the polynomial using one of the integer roots. Let’s use to perform synthetic division on .

Synthetic Division with

The coefficients of are .
Performing synthetic division:
The result of the synthetic division is .
Now, we will factor to find the remaining roots.

Factoring

To factor , we can look for two numbers that multiply to and add to . The numbers and work.
We can rewrite the middle term:
Now, we can factor by grouping:
Thus, we have:

Finding the Roots

Now we can find the roots from the factors:
  1. From , we get .
  2. From , we get .
  3. From , we get .

Summary of Roots

The roots of the polynomial are:
  • Integer roots: and
  • Rational root:
Since all roots found are real, there are no complex roots in this case.
Thus, the complete set of roots is:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The integer root theorem tells us that any rational root of a polynomial equation with integer coefficients is a factor of the constant term divided by a factor of the leading coefficient. For the polynomial , the constant term is , and the leading coefficient is . The possible rational roots are therefore . Upon testing these, you’ll find that , so is an integer root.
Now, to find the other roots, we can perform polynomial long division on by , which gives us . We can factor further using the quadratic formula . Plugging in , we get ; this leads to the roots and . Thus, the complete set of roots is and .
Now, looking for complex roots won’t apply here, as all roots are real. But, if we had a polynomial that did yield complex roots, we’d typically set the real portion equal to zero to find the roots lying on the imaginary axis.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad