Pregunta
upstudy study bank question image url

Given the following telescoping series, determine whether it converges or diverges. If it converges, find its sum.
That’s incorrect - mistakes are part of learning. Keep tryingl .
The series converges to 0 .
The series converges to 1 .
The series converges to .

The series diverges.

Ask by Pritchard Lowe. in the United States
Mar 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The series converges to 0.

Solución

To determine whether the given telescoping series converges or diverges, we need to analyze the series term by term.
The given series is:
Let’s analyze the series term by term:
  1. For :
  1. For :
  1. For :
Notice that the series is a telescoping series, meaning that each term cancels out the previous term except for the first and last terms.
The series can be rewritten as:
Since the series is a telescoping series, the sum of the series is the first term minus the limit of the last term as approaches infinity.
The first term is .
The limit of the last term as approaches infinity is .
Therefore, the sum of the series is .
The series converges to 0.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle telescoping series, it’s often helpful to rewrite the terms in a way that shows cancellation more clearly. For your series, distributing terms can reveal that many intermediate terms cancel out, leading to a finite number of terms that do not cancel. This can be examined through the limit of its partial sums as n approaches infinity.
By carefully analyzing the behavior of the remaining terms as n becomes very large, you can confirm whether the series converges or diverges. If the leftover terms tend towards a specific value or remain bounded, it gives a strong hint toward convergence. On the contrary, if they keep growing or don’t settle, it indicates divergence.
If you’re keen on enhancing your understanding further, explore mathematical convergence tests such as the ratio test or comparison test. These tools often help distinguish between convergent and divergent series quickly! For those who enjoy a deeper dive, consider engaging with series within calculus textbooks or online platforms like Khan Academy, which provide exercises and visualizations to strengthen your grasp. Happy learning!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad