Pregunta
upstudy study bank question image url

Khloe invested \( \$ 11,000 \) in an account paying an interest rate of \( 4.8 \% \) compounded continuously. Assuming no deposits or withdrawals are made, how much money, to the nearest ten dollars, would be in the account after 17 years?

Ask by Pope Carroll. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 17 years, Khloe will have approximately \$24,880 in her account.

Solución

To find the amount of money in the account after 17 years, we can use the formula for continuous compounding: \[ A = P \times e^{r \times t} \] Where: - \( A \) is the amount of money in the account after \( t \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the interest rate (in decimal form), - \( t \) is the time in years. Given: - \( P = \$11,000 \) - \( r = 4.8\% = 0.048 \) (in decimal form) - \( t = 17 \) years Substitute the values into the formula: \[ A = 11000 \times e^{0.048 \times 17} \] Now, we can calculate the amount of money in the account after 17 years. Calculate the value by following steps: - step0: Calculate: \(11000e^{0.048\times 17}\) - step1: Multiply the numbers: \(11000e^{0.816}\) - step2: Convert the expressions: \(11000e^{\frac{102}{125}}\) - step3: Rewrite the expression: \(11000\sqrt[125]{e^{102}}\) The amount of money in the account after 17 years is approximately $24,876.80. Rounded to the nearest ten dollars, the amount of money in the account after 17 years is $24,880.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To calculate the amount in the account after 17 years with continuous compounding interest, we use the formula: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the number of years the money is invested or borrowed for. - \( e \) is the base of the natural logarithm (approximately equal to 2.71828). Given: - \( P = 11000 \) - \( r = 0.048 \) - \( t = 17 \) Now plugging in these values: \[ A = 11000 \times e^{0.048 \times 17} \] First, calculate \( 0.048 \times 17 = 0.816 \). Next, calculate \( e^{0.816} \) (approximately 2.255). Now plug this back into the formula: \[ A \approx 11000 \times 2.255 \approx 24805 \] Therefore, to the nearest ten dollars, the amount in the account after 17 years would be \( \boxed{24810} \). And for an extra sprinkle of engagement... The account would have grown from \( \$ 11,000 \) to about \( \$ 24,810 \)! That's like turning a regular pizza into a feast, all thanks to the magic of compound interest. Just imagine, investing that money now could turn into a getaway trip in the future! Keep that in mind as you navigate those savvy investment decisions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad