e. \( \frac{(x+1)\left(x^{2}-36\right)}{x^{2}+8 x+12} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expression \( \frac{(x+1)\left(x^{2}-36\right)}{x^{2}+8 x+12} \), first, factor the numerator and the denominator. The expression \( x^2 - 36 \) is a difference of squares and can be factored into \( (x - 6)(x + 6) \). The denominator \( x^2 + 8x + 12 \) factors into \( (x + 2)(x + 6) \). Thus, the expression becomes: \[ \frac{(x + 1)(x - 6)(x + 6)}{(x + 2)(x + 6)} \] Next, you can cancel out the common factor \( (x + 6) \) from the numerator and the denominator, assuming \( x \neq -6 \): \[ \frac{(x + 1)(x - 6)}{(x + 2)} \] So, the simplified expression is: \[ \frac{(x + 1)(x - 6)}{(x + 2)}, \quad x \neq -6 \] Now, let’s address something intriguing: Factoring and simplifying expressions isn’t just a mundane task! Think of it as a puzzle that sharpens your problem-solving skills. The more you solve, the quicker your brain will connect those dots! If you’re looking to delve further into factoring or algebra techniques, there are countless online resources, like Khan Academy and Purplemath, which host engaging tutorials and practice problems that will transform learning into an enjoyable experience!