Find the number of ways to arrange the letters in REVOLVER.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the number of ways to arrange the letters in the word "REVOLVER," we first note that it consists of 8 letters. However, some letters are repeated. In this case, 'R' appears 2 times and 'E' appears 2 times. The formula for arranging letters when there are repetitions is given by: \[ \text{Number of arrangements} = \frac{n!}{n_1! \cdot n_2! \cdots n_k!} \] where \( n \) is the total number of letters, and \( n_1, n_2, \ldots, n_k \) are the frequencies of the repeated letters. Here: - Total letters, \( n = 8 \) (R, E, V, O, L, V, E, R) - Frequencies: R appears twice and E appears twice, while the letters V and O and L each appear once. Using the formula: \[ \text{Number of arrangements} = \frac{8!}{2! \cdot 2! \cdot 1! \cdot 1! \cdot 1!} \] Calculating this step-by-step: 1. Calculate \( 8! = 40320 \) 2. Calculate \( 2! = 2 \) 3. Therefore, \( 2! \cdot 2! = 2 \cdot 2 = 4 \) Now, substitute these values into the formula: \[ \text{Number of arrangements} = \frac{40320}{4} = 10080 \] So, the number of ways to arrange the letters in "REVOLVER" is \( \boxed{10080} \).