Pregunta
points) Determine if the following sequence converges. If so, find the limit.
Ask by Mann Pritchard. in the United States
Mar 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The sequence converges to 3.
Solución
We are given the sequence
-
Divide numerator and denominator by
: -
Take the limit as
: As, the terms and approach 0. Therefore, we have
Thus, the sequence converges, and its limit is
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To determine if the sequence
converges, we can analyze the expression as
approaches infinity. We can do this by dividing every term in the numerator and the denominator by
:
As
, the terms
and
in the numerator both approach 0. Similarly, the term
in the denominator also approaches 0. Therefore, the sequence simplifies to:
Thus, the sequence converges, and the limit is
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium