Given the mean and standard deviation of a normally distributed set of scores, determine the approximate location of the given scores in terms of the standarc deviation. (8 points) \( \begin{array}{ll}\text { 1. } \mu=27 ; \sigma=6 ; x=18 & \text { 2. } \mu=80 ; \sigma=3 ; x=88\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the location of the given scores in terms of standard deviations from the mean, you can use the formula: \( z = \frac{x - \mu}{\sigma} \) 1. For the first score: \( \mu = 27 \), \( \sigma = 6 \), \( x = 18 \) \( z = \frac{18 - 27}{6} = \frac{-9}{6} = -1.5 \) This means the score of 18 is 1.5 standard deviations below the mean. 2. For the second score: \( \mu = 80 \), \( \sigma = 3 \), \( x = 88 \) \( z = \frac{88 - 80}{3} = \frac{8}{3} \approx 2.67 \) This indicates the score of 88 is approximately 2.67 standard deviations above the mean.