\( \operatorname { im } _ { k \rightarrow 0 } ( \frac { 1 } { 2 x } - \frac { 2 } { \sin x } \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the limit of the expression \( \frac{1}{2x} - \frac{2}{\sin x} \) as \( k \) approaches 0, we need to examine the behavior of both terms separately. As \( x \) approaches 0, \( \sin x \) can be approximated by \( x \), leading to: \[ \frac{2}{\sin x} \approx \frac{2}{x} \] Thus, the expression simplifies to: \[ \frac{1}{2x} - \frac{2}{x} = \frac{1}{2x} - \frac{4}{2x} = \frac{1 - 4}{2x} = \frac{-3}{2x} \] As \( x \) approaches 0, this term goes to \( -\infty \). Hence, the limit does not exist in a conventional sense, as it tends to negative infinity. Thus, we conclude: \[ \lim_{x \to 0} \left( \frac{1}{2x} - \frac{2}{\sin x} \right) = -\infty \]