Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 42 and standard deviation 18 . What is the probability that \( X \) is between 6 and 96 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Bartlett Weaver. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 6 and 96 is approximately 0.997.

Solución

To find the probability that \( X \) is between 6 and 96, we can use the 68-95-99.7 rule for a normal distribution. Given: - Mean (\( \mu \)) = 42 - Standard Deviation (\( \sigma \)) = 18 The 68-95-99.7 rule states that: - About 68% of the data falls within 1 standard deviation of the mean. - About 95% of the data falls within 2 standard deviations of the mean. - About 99.7% of the data falls within 3 standard deviations of the mean. Since we are interested in the probability that \( X \) is between 6 and 96, we need to find the z-scores for these values. The z-score formula is: \[ z = \frac{X - \mu}{\sigma} \] Let's calculate the z-scores for 6 and 96: - For \( X = 6 \): \[ z = \frac{6 - 42}{18} = \frac{-36}{18} = -2 \] - For \( X = 96 \): \[ z = \frac{96 - 42}{18} = \frac{54}{18} = 3 \] Now, we can use the z-scores to find the probabilities using a standard normal distribution table or calculator. The probability that \( X \) is between 6 and 96 is the area under the standard normal curve between z = -2 and z = 3. Using a standard normal distribution table or calculator, we find that the area between z = -2 and z = 3 is approximately 0.997. Therefore, the probability that \( X \) is between 6 and 96 is approximately 0.997.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability that \( X \) is between 6 and 96, we will first standardize these values using the formula for a z-score: \[ Z = \frac{X - \mu}{\sigma} \] where \( \mu = 42 \) (mean) and \( \sigma = 18 \) (standard deviation). 1. For \( X = 6 \): \[ Z = \frac{6 - 42}{18} = \frac{-36}{18} = -2 \] 2. For \( X = 96 \): \[ Z = \frac{96 - 42}{18} = \frac{54}{18} = 3 \] Now, we look up the probabilities corresponding to these z-scores. Using the empirical rule \( (0.68-0.95-0.997) \): - A z-score of -2 corresponds to about 95% of the data lying above it (or 2.5% in the left tail). - A z-score of 3 corresponds to the upper extreme of the distribution, with about 99.7% of the data lying below it. So, the probability that \( X \) is between 6 and 96 can be found by calculating: \[ P(-2 < Z < 3) \approx P(Z < 3) - P(Z < -2) = 0.997 - 0.025 = 0.972 \] Rounding to the nearest thousandth, the final probability that \( X \) is between 6 and 96 is approximately \( 0.972 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad