Pregunta

7. \( f(x)=\frac{x^{3}}{2}-3 x^{-2}-2 x^{3}-x^{3 / 2} \)

Ask by Sandoval Turnbull. in Mexico
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified form of the function is \( -\frac{3x^{5}+6+2x^{3}\sqrt{x}}{2x^{2}} \).

Solución

Calculate or simplify the expression \( (x^3)/(2)-3*(1/x^2)-2*x^3-x^(3/2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{x^{3}}{2}-3\times \frac{1}{x^{2}}-2x^{3}-x^{\frac{3}{2}}\) - step1: Multiply the terms: \(\frac{x^{3}}{2}-\frac{3}{x^{2}}-2x^{3}-x^{\frac{3}{2}}\) - step2: Reduce fractions to a common denominator: \(\frac{x^{3}\times x^{2}}{2x^{2}}-\frac{3\times 2}{x^{2}\times 2}-\frac{2x^{3}\times 2x^{2}}{2x^{2}}-\frac{x^{\frac{3}{2}}\times 2x^{2}}{2x^{2}}\) - step3: Reorder the terms: \(\frac{x^{3}\times x^{2}}{2x^{2}}-\frac{3\times 2}{2x^{2}}-\frac{2x^{3}\times 2x^{2}}{2x^{2}}-\frac{x^{\frac{3}{2}}\times 2x^{2}}{2x^{2}}\) - step4: Transform the expression: \(\frac{x^{3}\times x^{2}-3\times 2-2x^{3}\times 2x^{2}-x^{\frac{3}{2}}\times 2x^{2}}{2x^{2}}\) - step5: Multiply the terms: \(\frac{x^{5}-3\times 2-2x^{3}\times 2x^{2}-x^{\frac{3}{2}}\times 2x^{2}}{2x^{2}}\) - step6: Multiply the numbers: \(\frac{x^{5}-6-2x^{3}\times 2x^{2}-x^{\frac{3}{2}}\times 2x^{2}}{2x^{2}}\) - step7: Multiply the terms: \(\frac{x^{5}-6-4x^{5}-x^{\frac{3}{2}}\times 2x^{2}}{2x^{2}}\) - step8: Multiply the terms: \(\frac{x^{5}-6-4x^{5}-2x^{\frac{7}{2}}}{2x^{2}}\) - step9: Subtract the terms: \(\frac{-3x^{5}-6-2x^{\frac{7}{2}}}{2x^{2}}\) - step10: Rewrite the fraction: \(-\frac{3x^{5}+6+2x^{\frac{7}{2}}}{2x^{2}}\) - step11: Simplify: \(-\frac{3x^{5}+6+2x^{3}\sqrt{x}}{2x^{2}}\) The simplified form of the given function \( f(x) = \frac{x^{3}}{2} - 3x^{-2} - 2x^{3} - x^{3/2} \) is \( -\frac{3x^{5}+6+2x^{3}\sqrt{x}}{2x^{2}} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that polynomial functions, like the one you've got, can have some funky behaviors based on their degree and coefficients? This particular function exhibits a mix of higher degree terms and negative exponent terms, making it interesting in its characteristics. To analyze it, you might want to look for key points such as local maxima and minima by taking the derivative, which can reveal where the function is increasing or decreasing. When graphing a function like this, be careful with the negative exponent! The term \( -3 x^{-2} \) can lead to a vertical asymptote at \( x = 0 \). This means as \( x \) approaches zero, the function could plunge down to negative infinity. Tackling such functions often requires evaluating limits around critical points to fully understand their behavior and sketch them accurately!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad