Pregunta
upstudy study bank question image url

To measure the height of the cloud cover at an airport, a worker shines a spotlight upward at an angle of \( 80^{\circ} \) from the horizontal. An observer 732 m away measures the angle of elevation to the spot of light to be \( 49^{\circ} \). Find the height of the cloud cover. height = Report answer accurate to 2 decimal places.

Ask by Santiago Macdonald. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of the cloud cover is approximately 2322.57 meters.

Solución

Given: - The angle of elevation from the horizontal to the spotlight is \( 80^{\circ} \). - The angle of elevation from the observer to the spotlight is \( 49^{\circ} \). - The distance from the observer to the spotlight is 732 m. We can use trigonometry to find the height of the cloud cover. Let's denote the height of the cloud cover as \( h \). From the given information, we can form a right-angled triangle with the spotlight as the vertex opposite the angle of elevation from the observer. The distance from the observer to the spotlight is the adjacent side, and the height of the cloud cover is the opposite side. Using the tangent function, we can relate the angle of elevation, the height of the cloud cover, and the distance from the observer to the spotlight: \[ \tan(49^{\circ}) = \frac{h}{732} \] Now, we can solve for \( h \) by rearranging the equation: \[ h = 732 \times \tan(49^{\circ}) \] Let's calculate the height of the cloud cover using the tangent function. The height of the cloud cover is approximately 2322.57 m. Therefore, the height of the cloud cover is approximately 2322.57 m.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the height of the cloud cover, we can use trigonometric relationships. Let's denote the height of the cloud cover as \( h \). First, set up the situation: the observer is 732 m away from the point directly under the cloud cover. This forms a right triangle, with the horizontal distance being one leg (732 m), the vertical height (h) as the other leg, and the line of sight to the spotlight as the hypotenuse. From the observer's point of view, we can use the tangent function relating the angle of elevation \(49^{\circ}\): \[ \tan(49^{\circ}) = \frac{h}{732} \] To solve for \( h \): \[ h = 732 \times \tan(49^{\circ}) \] Calculating \( \tan(49^{\circ}) \): \[ h \approx 732 \times 1.1504 \quad (\text{using a calculator}) \] \[ h \approx 842.42 \] Thus, the height of the cloud cover is approximately **842.42 m**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad