Pregunta
upstudy study bank question image url

\( \left.\qquad \begin{array}{l}\text { Solve the system of equations. } \\ \qquad \begin{array}{l}y=9 x-4 \\ y=6 x+8\end{array} \\ y=\square\end{array}\right) . \begin{array}{l}\frac{\square}{\square}\end{array} \)

Ask by Mccarthy Garrett. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( y = 32 \)

Solución

Solve the system of equations \( y=9x-4;y=6x+8 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}y=9x-4\\y=6x+8\end{array}\right.\) - step1: Substitute the value of \(y:\) \(9x-4=6x+8\) - step2: Move the expression to the left side: \(9x-6x=8+4\) - step3: Add and subtract: \(3x=8+4\) - step4: Add and subtract: \(3x=12\) - step5: Divide both sides: \(\frac{3x}{3}=\frac{12}{3}\) - step6: Divide the numbers: \(x=4\) - step7: Substitute the value of \(x:\) \(y=9\times 4-4\) - step8: Simplify: \(y=32\) - step9: Calculate: \(\left\{ \begin{array}{l}x=4\\y=32\end{array}\right.\) - step10: Check the solution: \(\left\{ \begin{array}{l}x=4\\y=32\end{array}\right.\) - step11: Rewrite: \(\left(x,y\right) = \left(4,32\right)\) The solution to the system of equations is \( x = 4 \) and \( y = 32 \). Therefore, the value of \( y \) is \( 32 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations \(y = 9x - 4\) and \(y = 6x + 8\), we can set the right-hand sides equal to each other because both equations equal \(y\): \[ 9x - 4 = 6x + 8 \] Now, let's solve for \(x\): 1. Subtract \(6x\) from both sides: \(9x - 6x - 4 = 8\) \(3x - 4 = 8\) 2. Add 4 to both sides: \(3x = 12\) 3. Divide by 3: \(x = 4\) Next, substitute \(x = 4\) back into either original equation to find \(y\). We can use the equation \(y = 9x - 4\): \[ y = 9(4) - 4 = 36 - 4 = 32 \] Thus, the solution to the system is \((x, y) = (4, 32)\) or \(y = 32\). Output: The history of solving systems dates back to ancient civilizations, where scholars in Mesopotamia developed methods to handle linear equations using geometric approaches. Fast forward to the 17th century, and you’d find René Descartes linking these ideas to his coordinate system, paving the way for algebra as we know it today! In real-world scenarios, solving systems of equations is crucial in fields such as economics for finding equilibrium prices, engineering for optimizing designs, and even ecology for modeling population dynamics. So the next time you encounter these equations, remember they hold the key to solving real-life problems!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad