Solving for \( y \) after the transformation \( (x, y) \rightarrow(\log x, \log y) \) produces exponential model power model logarithmic model
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
The transformation \( (x, y) \rightarrow (\log x, \log y) \) is super useful in statistics! Specifically, when you plot \( \log y \) versus \( \log x \) and get a straight line, it indicates a power model relationship between \( x \) and \( y \), expressed as \( y = ax^b \). This happens because the slope of that line corresponds to the exponent \( b \), and the y-intercept gives you \( \log a \). When dealing with exponential growth, if you apply \( \log \) to both sides of an equation like \( y = ab^x \), you'll get the logarithmic model \( \log y = \log a + x \log b \). This transforms an exponential relationship into a linear form! So, by simply taking logs, you can elegantly switch perspectives on your data.