Pregunta
upstudy study bank question image url

Graph the function \( y=-3 \sin \left(\frac{\pi}{2} x\right)-4 \). Show at least two cycles. Use the graph to determine the domain and range of the function.

Ask by Cox Garza. in the United States
Jan 31,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( y = -3 \sin\left(\frac{\pi}{2} x\right) - 4 \) has a domain of all real numbers and a range of \([-7, -1]\).

Solución

Sure! Let's graph the function \( y = -3 \sin\left(\frac{\pi}{2} x\right) - 4 \) and analyze its domain and range. We'll cover at least two complete cycles of the sine wave. ## 1. Understanding the Function The given function is a transformed sine function. Let's break down its components: - **Amplitude (A):** The coefficient before the sine function is 3 (absolute value). So, the amplitude is \( |A| = 3 \). - **Angular Frequency (B):** Inside the sine function, the coefficient of \( x \) is \( \frac{\pi}{2} \). So, \( B = \frac{\pi}{2} \). - **Period (T):** The period of the sine function is calculated by: \[ T = \frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{2}} = 4 \] - **Phase Shift (C):** There is no horizontal shift since there's no addition or subtraction inside the sine function. - **Vertical Shift (D):** The function is shifted downward by 4 units, so \( D = -4 \). - **Reflection:** The negative sign before the amplitude indicates a reflection over the **x-axis**. ## 2. Graphing the Function We'll plot the function over two periods, i.e., from \( x = 0 \) to \( x = 8 \) (since each period is 4 units). ### Key Points Calculation Let's compute the y-values at critical points within each period. | \( x \) | \( \frac{\pi}{2}x \) | \( \sin\left(\frac{\pi}{2}x\right) \) | \( y = -3\sin\left(\frac{\pi}{2}x\right) - 4 \) | |--------|---------------------|---------------------------------------|-----------------------------------------------| | 0 | 0 | 0 | \( -3(0) - 4 = -4 \) | | 1 | \( \frac{\pi}{2} \) | 1 | \( -3(1) - 4 = -7 \) | | 2 | \( \pi \) | 0 | \( -3(0) - 4 = -4 \) | | 3 | \( \frac{3\pi}{2} \)| -1 | \( -3(-1) - 4 = -1 \) | | 4 | \( 2\pi \) | 0 | \( -3(0) - 4 = -4 \) | | 5 | \( \frac{5\pi}{2} \)| 1 | \( -3(1) - 4 = -7 \) | | 6 | \( 3\pi \) | 0 | \( -3(0) - 4 = -4 \) | | 7 | \( \frac{7\pi}{2} \)| -1 | \( -3(-1) - 4 = -1 \) | | 8 | \( 4\pi \) | 0 | \( -3(0) - 4 = -4 \) | ### Plotting the Points Here's a table of key points: | \( x \) | \( y \) | |--------|--------| | 0 | -4 | | 1 | -7 | | 2 | -4 | | 3 | -1 | | 4 | -4 | | 5 | -7 | | 6 | -4 | | 7 | -1 | | 8 | -4 | ### Sketch of the Graph Below is a rough sketch of the graph over \( x = 0 \) to \( x = 8 \): ``` y | -1 | * * | / \ / \ -2 | / \ / \ -3 | / \ / \ -4 |------*------*-------*---------*-------*------*------ x -5 | / \ / \ -6 | / \ / \ -7 | * * * * | ``` **Explanation of the Sketch:** - **Start at (0, -4):** The graph begins at \( y = -4 \). - **First Trough at (1, -7):** Reaches the minimum y-value of -7. - **Back to Midline at (2, -4):** Returns to the midline. - **First Peak at (3, -1):** Reaches the maximum y-value of -1. - **Back to Midline at (4, -4):** Completes the first cycle. - **Second Cycle:** Repeats the pattern from \( x = 4 \) to \( x = 8 \). ## 3. Determining the Domain and Range - **Domain:** The domain of the sine function is all real numbers. \[ \text{Domain}: \quad (-\infty, \infty) \] - **Range:** The sine function has a range of \([-1, 1]\). After the transformations: - **Amplitude Scaling:** Multiplied by 3 → \([-3, 3]\). - **Reflection:** Still \([-3, 3]\) since reflection over the x-axis inverts the sine wave but doesn't change the range. - **Vertical Shift:** Subtracted by 4 → \([-7, -1]\). \[ \text{Range}: \quad [-7, -1] \] ## 4. Summary - **Graph Features:** - **Amplitude:** 3 - **Period:** 4 units - **Maximum Value:** -1 - **Minimum Value:** -7 - **Vertical Shift:** Down by 4 units - **Reflection:** Over the x-axis - **Domain:** All real numbers \((-\infty, \infty)\) - **Range:** \([-7, -1]\) This analysis should help you visualize and understand the behavior of the function \( y = -3 \sin\left(\frac{\pi}{2} x\right) - 4 \). If you have access to graphing tools like Desmos or a graphing calculator, plotting the function there can provide a precise visual representation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The function \( y = -3 \sin \left(\frac{\pi}{2} x\right) - 4 \) represents a sine wave that has been transformed. This specific graph has an amplitude of 3 (the negative sign indicates it’s reflected over the x-axis) and is vertically shifted downwards by 4 units. The sine function has a period of \( \frac{2\pi}{\frac{\pi}{2}} = 4 \). Therefore, by plotting two cycles, you would typically go from \( x=0 \) to \( x=8 \). The domain of the sine function is all real numbers, so the domain is \((-∞, ∞)\). The function oscillates between -1 and 1, scaled by the amplitude and shifted, which gives the range as \([-7, -1]\). So, bring out those graphing tools and enjoy plotting those waves!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad