Responder
The function \( y = -3 \sin\left(\frac{\pi}{2} x\right) - 4 \) has a domain of all real numbers and a range of \([-7, -1]\).
Solución
Sure! Let's graph the function \( y = -3 \sin\left(\frac{\pi}{2} x\right) - 4 \) and analyze its domain and range. We'll cover at least two complete cycles of the sine wave.
## 1. Understanding the Function
The given function is a transformed sine function. Let's break down its components:
- **Amplitude (A):** The coefficient before the sine function is 3 (absolute value). So, the amplitude is \( |A| = 3 \).
- **Angular Frequency (B):** Inside the sine function, the coefficient of \( x \) is \( \frac{\pi}{2} \). So, \( B = \frac{\pi}{2} \).
- **Period (T):** The period of the sine function is calculated by:
\[
T = \frac{2\pi}{B} = \frac{2\pi}{\frac{\pi}{2}} = 4
\]
- **Phase Shift (C):** There is no horizontal shift since there's no addition or subtraction inside the sine function.
- **Vertical Shift (D):** The function is shifted downward by 4 units, so \( D = -4 \).
- **Reflection:** The negative sign before the amplitude indicates a reflection over the **x-axis**.
## 2. Graphing the Function
We'll plot the function over two periods, i.e., from \( x = 0 \) to \( x = 8 \) (since each period is 4 units).
### Key Points Calculation
Let's compute the y-values at critical points within each period.
| \( x \) | \( \frac{\pi}{2}x \) | \( \sin\left(\frac{\pi}{2}x\right) \) | \( y = -3\sin\left(\frac{\pi}{2}x\right) - 4 \) |
|--------|---------------------|---------------------------------------|-----------------------------------------------|
| 0 | 0 | 0 | \( -3(0) - 4 = -4 \) |
| 1 | \( \frac{\pi}{2} \) | 1 | \( -3(1) - 4 = -7 \) |
| 2 | \( \pi \) | 0 | \( -3(0) - 4 = -4 \) |
| 3 | \( \frac{3\pi}{2} \)| -1 | \( -3(-1) - 4 = -1 \) |
| 4 | \( 2\pi \) | 0 | \( -3(0) - 4 = -4 \) |
| 5 | \( \frac{5\pi}{2} \)| 1 | \( -3(1) - 4 = -7 \) |
| 6 | \( 3\pi \) | 0 | \( -3(0) - 4 = -4 \) |
| 7 | \( \frac{7\pi}{2} \)| -1 | \( -3(-1) - 4 = -1 \) |
| 8 | \( 4\pi \) | 0 | \( -3(0) - 4 = -4 \) |
### Plotting the Points
Here's a table of key points:
| \( x \) | \( y \) |
|--------|--------|
| 0 | -4 |
| 1 | -7 |
| 2 | -4 |
| 3 | -1 |
| 4 | -4 |
| 5 | -7 |
| 6 | -4 |
| 7 | -1 |
| 8 | -4 |
### Sketch of the Graph
Below is a rough sketch of the graph over \( x = 0 \) to \( x = 8 \):
```
y
|
-1 | * *
| / \ / \
-2 | / \ / \
-3 | / \ / \
-4 |------*------*-------*---------*-------*------*------ x
-5 | / \ / \
-6 | / \ / \
-7 | * * * *
|
```
**Explanation of the Sketch:**
- **Start at (0, -4):** The graph begins at \( y = -4 \).
- **First Trough at (1, -7):** Reaches the minimum y-value of -7.
- **Back to Midline at (2, -4):** Returns to the midline.
- **First Peak at (3, -1):** Reaches the maximum y-value of -1.
- **Back to Midline at (4, -4):** Completes the first cycle.
- **Second Cycle:** Repeats the pattern from \( x = 4 \) to \( x = 8 \).
## 3. Determining the Domain and Range
- **Domain:** The domain of the sine function is all real numbers.
\[
\text{Domain}: \quad (-\infty, \infty)
\]
- **Range:** The sine function has a range of \([-1, 1]\). After the transformations:
- **Amplitude Scaling:** Multiplied by 3 → \([-3, 3]\).
- **Reflection:** Still \([-3, 3]\) since reflection over the x-axis inverts the sine wave but doesn't change the range.
- **Vertical Shift:** Subtracted by 4 → \([-7, -1]\).
\[
\text{Range}: \quad [-7, -1]
\]
## 4. Summary
- **Graph Features:**
- **Amplitude:** 3
- **Period:** 4 units
- **Maximum Value:** -1
- **Minimum Value:** -7
- **Vertical Shift:** Down by 4 units
- **Reflection:** Over the x-axis
- **Domain:** All real numbers \((-\infty, \infty)\)
- **Range:** \([-7, -1]\)
This analysis should help you visualize and understand the behavior of the function \( y = -3 \sin\left(\frac{\pi}{2} x\right) - 4 \). If you have access to graphing tools like Desmos or a graphing calculator, plotting the function there can provide a precise visual representation.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución