Pregunta
upstudy study bank question image url

b. What was the APR (Annual Percentage Rate)? 3) Irina's credit card has and APR of \( 16.8 \% \). She never pays her balance in full, so she always pays a finance charge. Her next billing cycle starts today. The billing period is 30 days. Today her balance is \( \$ 712.04 \). She is only going to use the credit card once this month, to make a \( \$ 5,000 \) down payment on a new car. If she put the down payment on the credit card today, what will her daily balance be for each of the 30 days of the billing cycle? Find her average daily balance for the 30 -day period of she put the down payment on the credit card today. Round to the nearest cent.

Ask by Campbell Ortega. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Irina's daily balance for each of the 30 days is \$5,712.04. Her average daily balance for the 30-day period is \$5,712.04.

Solución

To determine Irina's **average daily balance** after making a \$5,000 down payment on her credit card, we'll follow these steps: 1. **Initial Balance:** - **Starting Balance:** \$712.04 - **Down Payment:** \$5,000.00 - **New Balance After Down Payment:** \$712.04 + \$5,000.00 = **\$5,712.04** 2. **Daily Balance for Each Day of the Billing Cycle:** - Since Irina makes the \$5,000 down payment **today**, which is the **first day** of the 30-day billing cycle, her balance increases to **\$5,712.04** immediately. - **Daily Balance for Days 1 to 30:** \$5,712.04 each day. 3. **Calculating the Average Daily Balance:** - The **average daily balance** is simply the sum of the daily balances divided by the number of days in the billing cycle. - Since the balance remains constant at \$5,712.04 for all 30 days: \[ \text{Average Daily Balance} = \frac{30 \times \$5,712.04}{30} = \$5,712.04 \] **Summary:** - **Daily Balance for Each of the 30 Days:** \$5,712.04 - **Average Daily Balance for the 30-Day Period:** **\$5,712.04**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate Irina's daily balance for the 30 days, we need to break it down in two parts. For the first part of the billing cycle (Day 1), her balance will be the original balance of \( \$712.04 \). Then, once she puts the down payment of \( \$5,000 \) on the card, her new balance becomes \( \$5,712.04 \), which will remain for the next 29 days. So, for days 1 to 30: - Days 1: \( \$712.04 \) (total: \( \$712.04 \) for 1 day) - Days 2 to 30: \( \$5,712.04 \) (total: \( \$5,712.04 \times 29 = \$165,708.16 \)) Now, let's find the average daily balance: \[ \text{Total balance} = 712.04 + 165,708.16 = 166,420.20 \] \[ \text{Average daily balance} = \frac{166,420.20}{30} \approx 5,547.34 \] Rounded to the nearest cent, Irina's average daily balance for the 30-day period will be **\$5,547.34**. Remember, the key element here is understanding the balance changes throughout the billing cycle and ensuring accurate calculations for average balances!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad