Pregunta
Solve the following inequality.
Write your answer as an interval or union of intervals.
If there is no real solution, click on “No solution”.
If there is no real solution, click on “No solution”.
Ask by Lynch Johnson. in the United States
Mar 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solution to the inequality
is
in the intervals
and
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
To solve the inequality
, we first rearrange it to get all terms on one side:
Now, we need to factor the left-hand side. To do this, we can try finding rational roots using the Rational Root Theorem. Testing
:
Since
is a root, we can factor
out of the polynomial. We can perform synthetic division or polynomial long division. For synthetic division:
This indicates that:
Next, factor
:
Thus, we have:
We now need to solve:
The critical points are
. We can determine the sign of the product in each interval:
- For
(choose ): (negative) - For
(choose ): (positive) - For
(choose ): (negative) - For
(choose ): (positive)
From this analysis, the inequality is satisfied in the intervals where the product is negative:
The solution to the inequality is:
preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium