Pregunta
upstudy study bank question image url

Future value of a portfolio. Rachel and Richard want to know when their current portfolio will be sufficient for them to retire. They have the following balances in their portfolio: Money market account (MM): \( \$ 34,000 \) Government bond mutual fund \( (\mathrm{GB}): \$ 125,000 \) Large capital mutual fund (LC): \( \$ 104,000 \) Small capital mutual fund (SC): \( \$ 73,000 \) Real estate trust fund (RE): \( \$ 84,000 \) Rachel and Richard will need to invest their accounts for \( \square \) or more years to reach \( \$ 2,100,000 \). (Round to the nearestlwhole number.)

Ask by Black Curry. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Rachel and Richard need to invest their portfolio for approximately **24 years** to reach \$2,100,000, assuming an average annual return of 7%.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

To determine how long Rachel and Richard need to invest their portfolio to reach their retirement goal of $2,100,000, we first calculate their current total portfolio balance. Adding their balances together: \[ \text{Total Portfolio} = \$34,000 + \$125,000 + \$104,000 + \$73,000 + \$84,000 = \$420,000. \] Next, we can use the future value formula for compound interest to calculate the required time. Assuming an annual interest rate \( r \) (which you may need to specify), the future value \( FV \) is given by: \[ FV = PV \times (1 + r)^n, \] where - \( FV \) is the future value (\$2,100,000), - \( PV \) is the present value (\$420,000), - \( r \) is the annual interest rate (expressed as a decimal), and - \( n \) is the number of years. Rearranging this formula to solve for \( n \): \[ n = \frac{\log(FV/PV)}{\log(1 + r)}. \] Substituting the known values: \[ n = \frac{\log(2,100,000 / 420,000)}{\log(1 + r)}. \] Now you can plug in the expected rate of return to find the required number of years. For example, if they expect an average return of 6%: \[ n = \frac{\log(5)}{\log(1.06)} \approx 27.36 \text{ years}. \] So, they would need to invest their portfolio for approximately 27 years to reach their goal, depending on actual market performance. Make sure to round and adjust based on the specific interest rate and any changes in variables you anticipate!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad