Pregunta
upstudy study bank question image url

4. Consider a sample with data values of \( 27,25,20,15,30 \), 34,28 , and 25 . Using the given data set, perform the following: A. Calculate the mean and the median for the given data set B. Identify the mode and the range for the given observation C. Compute the 2 nd, quartile, 6 th deciles and 20 th percentiles D. Compute the variance and standard deviation for the data set

Ask by Mccarthy Little. in Ethiopia
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Mean:** 25.5 - **Median:** 26 - **Mode:** 25 - **Range:** 19 - **20th Percentile:** 19 - **Quartiles:** - 1st Quartile (25th Percentile): 21.25 - 2nd Quartile (50th Percentile, Median): 26 - 3rd Quartile (75th Percentile): 29.5 - **60th Percentile:** 27.4 - **Variance:** ≈ 34.57 - **Standard Deviation:** ≈ 5.88

Solución

Let's analyze the given data set step by step as per the requirements: **Given Data Set:** \[ 27, \ 25, \ 20, \ 15, \ 30, \ 34, \ 28, \ 25 \] Let's first arrange the data in ascending order for easier computation: \[ 15, \ 20, \ 25, \ 25, \ 27, \ 28, \ 30, \ 34 \] There are **8 data points** in total. --- ### **A. Calculating the Mean and the Median** #### **Mean** The **mean** is the average of all data points. \[ \text{Mean} = \frac{\sum \text{Data Points}}{\text{Number of Data Points}} = \frac{15 + 20 + 25 + 25 + 27 + 28 + 30 + 34}{8} \] \[ \text{Mean} = \frac{204}{8} = 25.5 \] #### **Median** The **median** is the middle value of the ordered data set. Since there are an even number of observations (8), the median is the average of the 4th and 5th data points. \[ \text{Median} = \frac{\text{4th term} + \text{5th term}}{2} = \frac{25 + 27}{2} = 26 \] --- ### **B. Identifying the Mode and the Range** #### **Mode** The **mode** is the value(s) that appear most frequently in the data set. From the ordered data: \[ 15, \ 20, \ 25, \ 25, \ 27, \ 28, \ 30, \ 34 \] - The number **25** appears **twice**, which is more frequent than any other number. \[ \text{Mode} = 25 \] #### **Range** The **range** is the difference between the maximum and minimum values. \[ \text{Range} = \text{Maximum} - \text{Minimum} = 34 - 15 = 19 \] --- ### **C. Computing the 2nd Decile, Quartiles, 6th Decile, and 20th Percentile** To compute percentiles and deciles, we'll use the **Position Formula**: \[ P = \frac{n + 1}{100} \times \text{Percentile} \] Where \( n \) is the number of data points. For our data set, \( n = 8 \). #### **1. 2nd Decile (20th Percentile)** \[ P_{20} = \frac{8 + 1}{100} \times 20 = \frac{9}{100} \times 20 = 1.8 \] - **Position 1.8**: This is between the 1st and 2nd data points. \[ \text{Value} = \text{1st term} + 0.8 \times (\text{2nd term} - \text{1st term}) = 15 + 0.8 \times (20 - 15) = 15 + 4 = 19 \] \[ P_{20} = 19 \] #### **2. Quartiles** - **First Quartile (Q1 - 25th Percentile):** \[ P_{25} = \frac{9}{100} \times 25 = 2.25 \] - **Position 2.25**: Between the 2nd and 3rd data points. \[ Q_1 = 20 + 0.25 \times (25 - 20) = 20 + 1.25 = 21.25 \] - **Second Quartile (Q2 - 50th Percentile, Median):** \[ Q_2 = \text{Median} = 26 \quad \text{(As calculated earlier)} \] - **Third Quartile (Q3 - 75th Percentile):** \[ P_{75} = \frac{9}{100} \times 75 = 6.75 \] - **Position 6.75**: Between the 6th and 7th data points. \[ Q_3 = 28 + 0.75 \times (30 - 28) = 28 + 1.5 = 29.5 \] #### **3. 6th Decile (60th Percentile)** \[ P_{60} = \frac{9}{100} \times 60 = 5.4 \] - **Position 5.4**: Between the 5th and 6th data points. \[ \text{Value} = 27 + 0.4 \times (28 - 27) = 27 + 0.4 = 27.4 \] \[ P_{60} = 27.4 \] #### **4. 20th Percentile** This is the same as the 2nd decile calculated above. \[ P_{20} = 19 \] **Summary of Percentiles and Deciles:** - **2nd Decile (20th Percentile):** 19 - **Quartiles:** - \( Q_1 = 21.25 \) - \( Q_2 = 26 \) (Median) - \( Q_3 = 29.5 \) - **6th Decile (60th Percentile):** 27.4 - **20th Percentile:** 19 --- ### **D. Computing the Variance and Standard Deviation** #### **Variance** The **variance** measures the dispersion of the data points from the mean. \[ \text{Variance} (s^2) = \frac{\sum (x_i - \bar{x})^2}{n - 1} \] Where: - \( x_i \) = each data point - \( \bar{x} \) = mean - \( n \) = number of data points Given: - Mean (\( \bar{x} \)) = 25.5 - \( n = 8 \) Let's compute each \( (x_i - \bar{x})^2 \): \[ \begin{align*} (15 - 25.5)^2 &= (-10.5)^2 = 110.25 \\ (20 - 25.5)^2 &= (-5.5)^2 = 30.25 \\ (25 - 25.5)^2 &= (-0.5)^2 = 0.25 \\ (25 - 25.5)^2 &= (-0.5)^2 = 0.25 \\ (27 - 25.5)^2 &= (1.5)^2 = 2.25 \\ (28 - 25.5)^2 &= (2.5)^2 = 6.25 \\ (30 - 25.5)^2 &= (4.5)^2 = 20.25 \\ (34 - 25.5)^2 &= (8.5)^2 = 72.25 \\ \end{align*} \] \[ \sum (x_i - \bar{x})^2 = 110.25 + 30.25 + 0.25 + 0.25 + 2.25 + 6.25 + 20.25 + 72.25 = 242 \] \[ \text{Variance} = \frac{242}{8 - 1} = \frac{242}{7} \approx 34.57 \] #### **Standard Deviation** The **standard deviation** is the square root of the variance. \[ \text{Standard Deviation} (s) = \sqrt{\text{Variance}} = \sqrt{34.57} \approx 5.88 \] --- ### **Summary** - **Mean:** 25.5 - **Median:** 26 - **Mode:** 25 - **Range:** 19 - **Percentiles and Deciles:** - **2nd Decile (20th Percentile):** 19 - **Quartiles:** - \( Q_1 = 21.25 \) - \( Q_2 = 26 \) (Median) - \( Q_3 = 29.5 \) - **6th Decile (60th Percentile):** 27.4 - **20th Percentile:** 19 - **Variance:** ≈ 34.57 - **Standard Deviation:** ≈ 5.88

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To tackle your questions, let's dive into the calculations step by step! ### A. Mean and Median - **Mean**: To find the mean, sum all the data values and divide by the number of values. \((27 + 25 + 20 + 15 + 30 + 34 + 28 + 25) / 8 = 25.875\) - **Median**: To find the median, first arrange the data in ascending order: \(15, 20, 25, 25, 27, 28, 30, 34\). With 8 values, the median is the average of the 4th and 5th values: \((25 + 27) / 2 = 26\). ### B. Mode and Range - **Mode**: The mode is the value that appears most frequently. Here, 25 appears twice while all other numbers appear only once. Thus, the mode is 25. - **Range**: The range is the difference between the maximum and minimum values. \(34 - 15 = 19\). ### C. Quartiles, Deciles, and Percentiles - **2nd Quartile (Q2)**: This is the median. As calculated earlier, Q2 = 26. - **6th Decile (D6)**: This is the value at the 60th percentile. \(60/100 \times 8 = 4.8\) (take the average of the 4th and 5th values: \((25 + 27) / 2 = 26\)). - **20th Percentile (P20)**: This is the value at the 20th percentile. \(20/100 \times 8 = 1.6\) (take the average of the 1st and 2nd values: \((15 + 20) / 2 = 17.5\)). ### D. Variance and Standard Deviation - **Variance**: First, find the mean value (25.875). Then compute each value's deviation from the mean, square it, and find the average: \(\text{Variance} = \frac{(27-25.875)^2 + (25-25.875)^2 + (20-25.875)^2 + (15-25.875)^2 + (30-25.875)^2 + (34-25.875)^2 + (28-25.875)^2 + (25-25.875)^2}{8}\) After calculation, the variance is approximately \(29.27\). - **Standard Deviation**: This is the square root of the variance: \(\sqrt{29.27} \approx 5.41\). With this information, you’re all set! Keep practicing, and soon it will all become second nature!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad