Perform the indicated operations and simplify, Express your answer as a single fraction, (a) \( \frac{2}{3}+\frac{9}{11} \) (b) \( \frac{5}{24}-\frac{3}{16} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve each part, we need to find a common denominator. (a) To add \( \frac{2}{3}+\frac{9}{11} \), the least common denominator is 33. We convert each fraction: \[ \frac{2}{3} = \frac{2 \times 11}{3 \times 11} = \frac{22}{33} \] \[ \frac{9}{11} = \frac{9 \times 3}{11 \times 3} = \frac{27}{33} \] Now, we can add: \[ \frac{22}{33} + \frac{27}{33} = \frac{49}{33} \] So, \( \frac{2}{3}+\frac{9}{11} = \frac{49}{33} \). (b) For \( \frac{5}{24}-\frac{3}{16} \), the least common denominator is 48. We convert each fraction: \[ \frac{5}{24} = \frac{5 \times 2}{24 \times 2} = \frac{10}{48} \] \[ \frac{3}{16} = \frac{3 \times 3}{16 \times 3} = \frac{9}{48} \] Now, we subtract: \[ \frac{10}{48} - \frac{9}{48} = \frac{1}{48} \] So, \( \frac{5}{24}-\frac{3}{16} = \frac{1}{48} \).