Pregunta
upstudy study bank question image url

Perform the indicated operations and simplify, Express your answer as a single fraction, (a) \( \frac{2}{3}+\frac{9}{11} \) (b) \( \frac{5}{24}-\frac{3}{16} \)

Ask by Peterson Dawson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) \( \frac{49}{33} \) (b) \( \frac{1}{48} \)

Solución

Let's perform the indicated operations step by step and simplify each expression. ### Problem (a) **Add** \( \frac{2}{3} \) and \( \frac{9}{11} \). **Step 1: Find a Common Denominator** The denominators are 3 and 11. Since 3 and 11 are coprime (they have no common factors other than 1), the least common denominator (LCD) is: \[ \text{LCD} = 3 \times 11 = 33 \] **Step 2: Convert Each Fraction** Convert each fraction to have the denominator of 33: \[ \frac{2}{3} = \frac{2 \times 11}{3 \times 11} = \frac{22}{33} \] \[ \frac{9}{11} = \frac{9 \times 3}{11 \times 3} = \frac{27}{33} \] **Step 3: Add the Fractions** \[ \frac{22}{33} + \frac{27}{33} = \frac{22 + 27}{33} = \frac{49}{33} \] Since 49 and 33 have no common factors other than 1, the fraction is already in its simplest form. **Answer for (a):** \[ \frac{49}{33} \] ### Problem (b) **Subtract** \( \frac{3}{16} \) from \( \frac{5}{24} \). **Step 1: Find a Common Denominator** The denominators are 24 and 16. Let's find the LCD: - Prime factors of 24: \( 2^3 \times 3 \) - Prime factors of 16: \( 2^4 \) The LCD is the product of the highest powers of all primes present: \[ \text{LCD} = 2^4 \times 3 = 16 \times 3 = 48 \] **Step 2: Convert Each Fraction** Convert each fraction to have the denominator of 48: \[ \frac{5}{24} = \frac{5 \times 2}{24 \times 2} = \frac{10}{48} \] \[ \frac{3}{16} = \frac{3 \times 3}{16 \times 3} = \frac{9}{48} \] **Step 3: Subtract the Fractions** \[ \frac{10}{48} - \frac{9}{48} = \frac{10 - 9}{48} = \frac{1}{48} \] Since 1 and 48 have no common factors other than 1, the fraction is already in its simplest form. **Answer for (b):** \[ \frac{1}{48} \] ### Final Answers: - **(a)** \( \frac{49}{33} \) - **(b)** \( \frac{1}{48} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve each part, we need to find a common denominator. (a) To add \( \frac{2}{3}+\frac{9}{11} \), the least common denominator is 33. We convert each fraction: \[ \frac{2}{3} = \frac{2 \times 11}{3 \times 11} = \frac{22}{33} \] \[ \frac{9}{11} = \frac{9 \times 3}{11 \times 3} = \frac{27}{33} \] Now, we can add: \[ \frac{22}{33} + \frac{27}{33} = \frac{49}{33} \] So, \( \frac{2}{3}+\frac{9}{11} = \frac{49}{33} \). (b) For \( \frac{5}{24}-\frac{3}{16} \), the least common denominator is 48. We convert each fraction: \[ \frac{5}{24} = \frac{5 \times 2}{24 \times 2} = \frac{10}{48} \] \[ \frac{3}{16} = \frac{3 \times 3}{16 \times 3} = \frac{9}{48} \] Now, we subtract: \[ \frac{10}{48} - \frac{9}{48} = \frac{1}{48} \] So, \( \frac{5}{24}-\frac{3}{16} = \frac{1}{48} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad