Pregunta
upstudy study bank question image url

4:01 .11 Previous 33 Next Unit Pretes Submit Test Reader Tools (i) Info Save \& Exit 33 Select the correct answer. How many solutions does this system of equations have? \[ \begin{array}{l} y=2 x+5 \\ y=x^{3}+4 x^{2}+x+2 \end{array} \] A. no solution B. 1 solution C. 2 solutions D. 3 solutions

Ask by Bowers Daniel. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system has 3 solutions. **Answer: D. 3 solutions**

Solución

To determine how many solutions the system of equations has, we need to find the number of real solutions to the following system: \[ \begin{cases} y = 2x + 5 \\ y = x^3 + 4x^2 + x + 2 \end{cases} \] ### Step 1: Set the Equations Equal to Each Other Since both equations equal \( y \), we can set them equal to each other: \[ 2x + 5 = x^3 + 4x^2 + x + 2 \] ### Step 2: Rearrange the Equation Rearrange the equation to bring all terms to one side: \[ x^3 + 4x^2 - x - 3 = 0 \] ### Step 3: Analyze the Cubic Equation To determine the number of real roots of the cubic equation \( x^3 + 4x^2 - x - 3 = 0 \), we can use the following methods: **1. Rational Root Theorem:** - Possible rational roots are \( \pm1, \pm3 \). - Testing these, none satisfy the equation, indicating no rational roots. **2. Sign Changes:** Evaluate the function \( f(x) = x^3 + 4x^2 - x - 3 \) at various points: - \( f(-5) = -23 \) - \( f(-4) = 1 \) (Sign change from negative to positive → one root between -5 and -4) - \( f(-1) = 1 \) - \( f(0) = -3 \) (Sign change from positive to negative → one root between -1 and 0) - \( f(1) = 1 \) (Sign change from negative to positive → one root between 0 and 1) **3. Conclusion:** Since there are three sign changes, the cubic equation has **three real roots**. Therefore, the original system of equations has **three solutions**. ### Final Answer **D. 3 solutions**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine how many solutions the given system of equations has, we must analyze the equations visually or algebraically. The first equation, \(y = 2x + 5\), represents a straight line with a slope of 2. The second equation, \(y = x^{3} + 4x^{2} + x + 2\), is a cubic polynomial, which can have up to 3 intersections (solutions) with the line. By graphing or calculating the points of intersection, you may find that the cubic function can cross the linear equation in various ways. Depending on the shape of the cubic graph, the equations could intersect at 0, 1, 2, or 3 points. In fact, since the cubic has a degree of 3, it can have up to 3 real solutions. However, considering the nature of polynomial growth (a cubic rises to infinity on both ends), it can intersect the line potentially at each turning point. Ultimately, determining the exact number of intersections may require further analysis of the derivative or specific values. In summary, without loss of generality, the answer is: D. 3 solutions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad