Pregunta
upstudy study bank question image url

Complete the statements below to describe the formulas for sum and difference of cubes. The sum of cubes can be factored as a product of a binomial and trinomial such that the sum of cubes will have a [Select ] trinomial where the [Select ] [Select] The difference of cubes can be factorectas a proauctora such that the difference of cubes will have a [Select ] multiplied by a trinomial where the and trinomial [Select ] [Select ]

Ask by Campbell Moran. in the United States
Feb 08,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sum of cubes is factored as (a + b)(a² – ab + b²), and the difference of cubes is factored as (a – b)(a² + ab + b²).

Solución

We can write the formulas for the sum and difference of cubes as follows:   a³ + b³ = (a + b)(a² – ab + b²)   a³ – b³ = (a – b)(a² + ab + b²) Now, to complete the statements: 1. For the sum of cubes:   • The sum of cubes can be factored as a product of a binomial and a trinomial such that the sum of cubes will have a binomial factor with a plus sign (a + b),   • multiplied by a trinomial in which the middle term is negative (a² – ab + b²). 2. For the difference of cubes:   • The difference of cubes can be factored as a product of a binomial and a trinomial such that the difference of cubes will have a binomial factor with a minus sign (a – b),   • multiplied by a trinomial in which all three terms are added (a² + ab + b²). This distinction in the signs of the middle term of the trinomial is key in differentiating the two formulas.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The sum of cubes can be factored as a product of a binomial and trinomial such that the sum of cubes will have a perfectly squared binomial, where the expression is \((a + b)(a^2 - ab + b^2)\). This means that when you add two numbers together and cube them, you can think of it as breaking it down into this nifty combination, making calculations a breeze! The difference of cubes can be factored as a product that consists of a binomial multiplied by a trinomial where the expression is \((a - b)(a^2 + ab + b^2)\). It’s like using a magic trick to simplify problems involving subtraction of cubes, revealing the hidden structure behind the numbers and making complex equations much more manageable!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad