Pregunta
upstudy study bank question image url

A new car is purchased for 19900 dollars. The value of the car depreciates at \( 7.5 \% \) per year. What will the value of the car be, to the nearest cent, after 8 years?

Ask by Wilson Carroll. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The car's value after 8 years is approximately $10,665.64.

Solución

To find the value of the car after 8 years, we can use the formula for depreciation: \[ \text{Value after depreciation} = \text{Initial value} \times (1 - \text{Depreciation rate})^{\text{Number of years}} \] Given: - Initial value of the car = $19900 - Depreciation rate = 7.5% per year - Number of years = 8 Substitute the values into the formula: \[ \text{Value after depreciation} = 19900 \times (1 - 0.075)^8 \] Now, we can calculate the value of the car after 8 years. Calculate the value by following steps: - step0: Calculate: \(19900\left(1-0.075\right)^{8}\) - step1: Subtract the numbers: \(19900\times 0.925^{8}\) - step2: Convert the expressions: \(19900\left(\frac{37}{40}\right)^{8}\) - step3: Simplify: \(19900\times \frac{37^{8}}{40^{8}}\) - step4: Rewrite the expression: \(20\times 995\times \frac{37^{8}}{40^{8}}\) - step5: Rewrite the expression: \(20\times 995\times \frac{37^{8}}{20^{8}\times 2^{8}}\) - step6: Reduce the numbers: \(995\times \frac{37^{8}}{20^{7}\times 2^{8}}\) - step7: Rewrite the expression: \(5\times 199\times \frac{37^{8}}{20^{7}\times 2^{8}}\) - step8: Rewrite the expression: \(5\times 199\times \frac{37^{8}}{5^{7}\times 4^{7}\times 2^{8}}\) - step9: Reduce the numbers: \(199\times \frac{37^{8}}{5^{6}\times 4^{7}\times 2^{8}}\) - step10: Multiply: \(\frac{199\times 37^{8}}{65536000000}\) The value of the car after 8 years will be approximately $10665.64 to the nearest cent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To calculate the value of the car after 8 years of depreciation at a rate of 7.5% per year, we can use the formula for depreciation: \[ V = P(1 - r)^t \] Where: - \( V \) is the future value of the car, - \( P \) is the initial purchase price ($19,900), - \( r \) is the depreciation rate (0.075), and - \( t \) is the time in years (8). Plugging in the values: \[ V = 19900 \times (1 - 0.075)^8 \] Calculating this step-by-step: - \( 1 - 0.075 = 0.925 \) - \( 0.925^8 \approx 0.5089 \) - Multiply that by the initial purchase price: \[ V \approx 19900 \times 0.5089 \approx 10110.01 \] Therefore, the value of the car after 8 years will be approximately **$10,110.01**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad