Pregunta
upstudy study bank question image url

Avinash borrowed \( ₹ 32,000 \) from his friend Gaurav at the rate of \( 8 \% \) per annum simple interest for 3 years, He lent this money to Vivek at the same rate but compounded annually. Find hais gafter 3 years. Kamala borrowed \( ₹ 36,400 \) from a Bank to buy a scooter at a rate of \( 15 \% \) p.a. compounded yearly. What

Ask by O'Quinn Sherman. in India
Jan 11,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Avinash borrows ₹32,000 at 8% simple interest for 3 years, paying ₹7,680 in interest, totaling ₹39,680. He lends the same amount to Vivek at 8% compound interest annually, earning approximately ₹8,310.78 after 3 years. His net gain is ₹630.78. Kamala borrowed ₹36,400 at 15% compounded yearly, but the time period and specific details are missing. Please provide complete information for a full solution.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To calculate Avinash’s gain after 3 years, we first find the total amount Vivek has to pay back after borrowing the \( ₹ 32,000 \) at \( 8\% \) compounded annually. Using the formula for compound interest \( A = P (1 + r/n)^{nt} \) where \( P = 32000 \), \( r = 0.08 \), \( n = 1 \), and \( t = 3 \), we find: \[ A = 32000 \times (1 + 0.08/1)^{1 \times 3} = 32000 \times (1.08)^3 \approx 32000 \times 1.2597 \approx ₹ 40,431.04 \] Avinash initially borrowed \( ₹ 32,000 \), so his gain after 3 years is: \[ Gain = Total Amount from Vivek - Principal = 40,431.04 - 32,000 \approx ₹ 8,431.04 \] For Kamala's scooter loan of \( ₹ 36,400 \) at \( 15\% \) compounded yearly, we also use the compound interest formula. Here, \( P = 36,400 \), \( r = 0.15 \), and \( t = 1 \) (for a single year): \[ A = 36400 \times (1 + 0.15)^{1} = 36400 \times 1.15 \approx ₹ 41,860 \] Therefore, after 3 years, if the loan is calculated yearly, it grows substantially, and she would owe more each year instead of a flat interest. Staying savvy about how compound interest works can really save you from shocking surprises!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad